スプライン補間を用いて推定した地質境界面の信頼度の評価方法

升本 眞二*・根本 達也*・吉田 宗可*・ベンカテッシュ ラガワン**・野々垣 進***

Reliability Evaluation Method for Geological Boundary Surface Estimated by Spline Interpolation

Shinji MASUMOTO^{*}, Tatsuya NEMOTO^{*}, Muneyori YOSHIDA^{*} Venkatesh RAGHAVAN^{**} and Susumu NONOGAKI^{***}

* 大阪市立大学大学院理学研究科 Graduate School of Science, Osaka City University, 3-3-138

Sugimoto, Sumiyoshi ku, Osaka 558-8585, Japan. E-mail: masumoto@sci.osaka-cu.ac.jp.

** 大阪市立大学大学院創造都市研究科 Graduate School for Creative Cities, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

*** 国立研究開発法人産業技術総合研究所 Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.

キーワード:地質境界面,スプライン補間,信頼性,3次元地質モデル **Key words**: Geological boundary surface, Spline interpolation, Reliability, Three dimensional geologic model

1. はじめに

3 次元地質モデルは種々の解析等の結果に大きな影響を 及ぼすため、モデルの信頼度を示す必要がある. 信頼度は 地球統計学的手法によるモデルでは uncertainty(不確実 性)として多く議論されている(Tacher et al., 2006 など). しかし、スプライン補間はほとんどのデータ点を満足する 面を推定するために、スプライン補間で境界面を推定して 構築したサーフェースモデルでは、信頼度を表現すること は一般的ではない. これに対して、Masumoto et al. (2012) は地質境界面とモデル全体空間の2つの視点から信頼度を データ密度から簡易に評価する方法を示した. ここではデ ータの種類や面の形状を考慮したスプライン補間による地 質境界面の信頼度の評価方法について述べる.

2. 地質境界面の信頼度の評価の基本原理

地質境界面の推定には、等式・不等式で表される2種類 の標高データが用いられる.等式データは不等式データに 比べて推定結果への影響は高い.面の再現性はデータ密度 が高いほど良い.また、面の形状の変化が大きい所では高 いデータ密度が必要である.この考えからデータの密度を 境界面の形状で補正して信頼度とする方法を検討した.

データ密度はカーネル密度推定法を拡張して求めた.1 次元の場合の一般式を次に示す.

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

ここで,*K*(*u*)はカーネル関数,*n*はデータ数,*h*はバンド幅, *x*-*x*_iはデータ点*x*_iと密度を求める点*x*との距離.

カーネル関数は様々であるが、ここでは広く利用されて いる次式の Gaussian を用いた.

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$$

データの種類(等式・不等式)による推定結果への影響 の違いに対応するために、データに重みをつけた.データ の重みはカーネル関数の高さにより次式のように表す.

$$\hat{f}_{h}(x) = \frac{1}{h \sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} (w_{i} K(\frac{x - x_{i}}{h}))$$

ここで、 w_i はデータの種類に対する重みで、等式データは $w_i = 1$,不等式データは、 $w_i = p_1 (0 < p_1 < 1)$ とする.

地質境界面の真の形状はわからない.既存のデータから 推定した面を用いて面の形状の変化量を推定した.この変 化量の計算方法は多様であるが,ここでは,境界面の推定 プログラムの中で面 f の滑らかさ(平面性)を評価する汎 関数(塩野ほか,2001;野々垣ほか,2008)として用いら れている次式から算出した.

$$V = \left(\frac{\partial^2 f}{\partial x^2}\right)^2 + 2\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 + \left(\frac{\partial^2 f}{\partial y^2}\right)^2$$

面の形状変化が大きい所では、多くのデータが必要であ り、個々のデータが推定結果に影響する範囲は小さい.こ こことから、面の形状変化の大きい所ではカーネル関数の バンド幅を小さくして形状の変化をデータ密度に反映した.

$$\hat{f}_{h}(x) = \frac{1}{h \sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} (w_{i} K(\frac{x - x_{i}}{h s_{i}}))$$

ここで、 s_i は面の形状の変化に対する重みで、変化の無い所では $s_i = 1$ 、変化の大きい所では $s_i = p_2(0 < p_2 < 1)$ とする.

得られたデータ密度の値は境界面の推定に有効なデータ の量を示し、これを信頼度とする.

第1図に $w_i \ge s_i \ge \varepsilon$ 変化させた際のカーネル関数の例を示 す. なお、 $w_i \ge s_i$ に与える $p_1 \ge p_2$ の具体的な数値につい ては、今後の検討を要する.

(a)バンド幅 *h* = 10, (b) *h* = 20, (c) *h* = 25, および (d) *h* = 40.

第5図 推定結果の境界面. 第6図 モデルと推定結果の差.

3. テストデータを用いた信頼度評価の例

形状が急に変化する境界面のモデル(第2図)を用いた 信頼度の計算例を示す. このモデルから等間隔にサンプリ ングしたデータ点を第3図に示す.第4図にカーネル関数 に Gaussian を用いてデータ密度を求めた結果を示す.バ ンド幅hが小さいとデータ点の周辺のみの密度が高いと評 価されることがわかる.このデータから推定した境界面を 第5図に示す.推定プログラムにはBS-Horizon(野々垣 ほか, 2008)を用いた. 面の形状が急変する所で, オーバ ーシュート(overshoot)やアンダーシュート(undershoot)が生 じていることがわかる.モデルと推定結果の差を第6図に 示す.境界面の形状の変化量を第7図に示す.第8図に境 界面の形状変化を補正して求めた信頼度を示す.第9図は 信頼度の表示例で, 第9図(b)(c)は信頼度を透明度で表した. 信頼度の低い部分に新たにデータを追加し、境界面を再推 定した結果を第10図に示す.第6図に比べるとモデルと 再推定結果の差は面が折れ曲がる部分を除いて小さくなり, より再現性の高い結果となっていることがわかる.

(a)信頼度,(b)信頼度を透 過度で表示,(c)標高を色 で信頼度を透過度で表示. 第10図 再推定した境界面. (a)データ点(赤色が追加点), (b)推定結果の境界面,(c)モデ ルと推定結果の差.

4. おわりに

信頼度の高い地質境界面の推定には、高いデータ密度に 加えて適切なデータ配置も必要である.データ配置の適切 さは、データ密度分布の傾きから算出できる.従って、デ ータの密度が高く、かつ、データ密度分布の傾きが小さい 領域が信頼度の高い領域となる.今後、データ配置も加え た信頼度の評価および表現方法を検討していきたい.なお、 本研究は JSPS 科研費 25330134 の助成を受けたものであ る.

文 献

- Masumoto S., Nemoto T., Nonogaki S., Tawara H. and Raghavan V. (2012) A study of expression method for reliability of three dimensional geologic model. *Proc. Int. Symp. GIS-IDEAS 2012*, pp.83-88.
- 野々垣進・升本眞二・塩野清治 (2008) 3 次 B-スプラインを用い た地層境界面の推定. 情報地質, vol.19, no.2, pp.61-77.
- 塩野清治・能美洋介・升本眞二・坂本正徳 (2001) Horizon 2000:等式・不等式制約条件や傾斜データを活用した地層 面推定プログラムの改良. 情報地質, vol.12, no.4, pp.229 -249.
- Tacher, L., Pomian-Srzednicki, I. and Parriaux, A. (2006) Geological uncertainties associated with 3-D subsurface models. *Computers & Geosciences*, vol.32, no.2, pp.212 -221.