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1. Introduction 

Minerals can be detected from remotely sensed imagery by 
combining geologic and fracture mapping with the recognition 
of hydrothermally altered rocks. Generation of most 
epithermal vein deposits has been related to hydrothermal 
alteration of the adjacent country rocks (Sabins, 1999). 
Passive sensors were applied in geological applications, 
ranging from a few spectral bands to more than 100 
contiguous bands, covering visible to shortwave infrared 
regions of the electromagnetic spectrum. Development of 
multi– and hyper–spectral geologic remote sensing is 
classified into the Landsat era, ASTER era, and hyperspectral 
era (van der Meer et al., 2012). EO–1 Hyperion, a 
representative hyperspectral sensor, has been applied to map 
hydrothermal alteration by covering the 0.4 – 2.5 µm range 
with 242 bands at approximately 10 nm spectral resolution 
and 30 m spatial resolution. Despite this spectral superiority, 
its image scene is much narrower than Landsat image scene. 

Based on that background, this study aims to develop a 
new method, Pseudo–Hyperspectral Image Synthesis 
Algorithm (PHISA), to transform Landsat imagery into 
pseudo hyperspectral imagery using the correlation between 
Landsat and EO–1 Hyperion data. The pseudo–hyperspectral 
imagery can have the number of bands as same as the 
number of high–quality Hyperion bands, and the same swath 
width as Landsat scene. The resultant pseudo–hyperspectral 
imagery must contribute to detailed identification of minerals 
than the traditional satellite imagery. 
 
2. Study area and data 

For a case study, we selected an area with 6 km × 7.1 km 
size in the southwestern Nevada volcanic field in the US, 
which is located about 10 km northwest of the Gold Mountain 
and 30 km southwest of the Cuprite alteration zones. Because 
of an extremely arid climate condition, this region is barren 
and sparsely vegetated land, which is suitable for remote 
sensing–based mineral mapping. Cuprite served as the test 
site of many remote sensing instruments including airborne 
and orbital visible, near–infrared, thermal–infrared, and 
hyperspectral sensors (Swayze et al., 2014). 

We used two cloud–free images on 23 July 2001, Landsat 7 
ETM+ and EO–1 Hyperion images. Both satellites have the 
sun–synchronous orbit at an altitude of 705 km and provide 
Earth imagery at a 30 m spatial resolution. 
 
3. Methodology 

The Hyperion data should be corrected prior to any data 

analysis because they suffer from noise and sensor artefacts 
(Farifteh et al., 2013). In this study, the Hyperion data were 
corrected for outlier pixels, vertical strips, and smile effects 
prior to atmospheric calibration. Both data were corrected for 
the atmospheric effects using ENVI–FLAASH module, and 
Hyperion scene was co–registered to Landsat scene. 
  Assuming that multivariate linear regression models can 
be hold between each of Hyperion bands and Landsat bands, 
Bayesian model averaging method (BMA) was applied to 
select the best model from a set of possible models. This best 
model is used to build pseudo–hyperspectral data which has 
the same swath width as the Landsat scene. A multivariate 
linear regression model is: 

��� = ��� + ���. ��� + ���. ��� + ���. ��� + ���. ��� +

                ���. ��� + ���. ��� + ���                         (1) 

where Hij represents pixel value of Hyperion image at band i 
and location j; β0i is intercept at Hyperion band i; β1i, β2i, β3i, β4i, 
β5i, and β6i are unknown regression coefficients between 
Landsat bands and Hyperion band i; L1j, L2j, L3j, L4j, L5j, and 
L6j represent pixel values at location j of Landsat band 1, 2, 3, 
4, 5, and 7, respectively; and εij is random error (residual) at 
band i and location j. 

BMA accounts for the model uncertainty inherent in the 
variable selection problem by averaging over the best models 
in the model class according to approximate posterior model 
probability. The posterior probability is derived by means of 
Bayes’ theorem (Culka, 2014). 

                 �(�|�, �, �) =
�(�|�)�(�|�)
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�

             (2) 

where p(D|ω) is a formal probability model for some 
(unknown) value of ω, the probabilistic mechanism which has 
generated the observed data D; p(ω|K) is the prior probability 
distribution over the sample space Ω, describing the available 
(expert) knowledge K about the value of ω prior to the data 
being observed; and p(ω|D, A, K) is the posterior probability 
density. The best model shows the lowest Bayesian 
Information Criterion (BIC) and the highest posterior 
probability. 
 
4. Results and discussion 

Based on the model selection results by BMA, Landsat 
imagery was transformed into 155 bands of pseudo–
hyperspectral imagery. Most models have multiple R–
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squared values higher than 90%, which assures high 
accuracy of the models. The lowest one is 76% (Fig. 1). Band 5 
of Landsat imagery appears the most frequently (152 times), 
while Band 7 is less frequent (105 times) in the models. 
Comparing the pair of images in Figure 2, there are no clear 
differences between the pseudo– and original data. The 
pattern, texture, shape, and border of objects in both images 
look quite similar, but the tone of color is slightly brighter in 
the pseudo–hyperspectral data. This difference may be 
caused by that we calculated the regression model for all the 
pixels of each band without considering classification of 
surface features. The transformation results would have been 
much better if a land cover map or a geologic map was used to 
find the best model of each feature at every bands. 

Two boxplots of Root Mean Square Error (RMSE) and the 
correlation coefficients between each band of original 
Hyperion data and the pseudo–hyperspectral data are shown 
in Figure 3. Most bands have Pearson's coefficients > 0.95, 
and a small fraction have the coefficients < 0.93 like outliers 
in the data sets. Band 220 has the lowest correlation 
coefficient of 0.87. In a similar manner, RMSE values are 
mostly smaller than 0.014, which is considerably low. Because 
only RMSE of band 160 is 0.052, this band should be removed 
from further processing. 

Figure 1. Histogram of multiple R–squared. 
 

Figure 2. Visual comparison of Hyperion data (left) and 
pseudo– hyperspectral data (right): (a) and (b) are images of 
band 25, and (c) and (d) are images of band 159. 

Figure 3. Boxplot of RMSE (above) and Pearson's coefficient 
(below) between the pseudo– and original bands.  
 

 

 

 

 

 

 

 

 

Figure 4. Scatter plot of pseudo– and original data of band 25. 

Figure 4 shows a strong correlation and high linearity 
between pseudo– and original band 25. Most pseudo–bands 
have the same linearity as the band 25 with the original 
bands. These observations suggest that the statistical 
suitability of PHISA. 
 
5. Conclusion 

We have developed a transformation method of Landsat 
imagery into pseudo–Hyperion imagery, PHISA. A total of 
155 pseudo–bands are simulated with high accuracy by the 
multivariate linear regression models between each of 
Hyperion bands and Landsat bands and the Bayesian model 
averaging method. Strong correlations between each band of 
Hyperion data and the pseudo–hyperspectral data were 
confirmed. We are now in the process of mineral mapping 
using the pseudo–Hyperion imagery, and improving PHISA 
by searching the best model of each feature at every bands. 
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