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1. Introduction

Near-shore bathymetry is likely to be the coastal
variable that most limits the investigation of coastal
processes and the accuracy of numerical models in
coastal areas, as acquiring medium spatial resolution
data in the near-shore is highly demanding and costly. As
such, the ability to derive bathymetry using remote
sensing techniques is a topic of increasing interest in
coastal monitoring and research. Many authors (Lyzenga
et al, 2006; Stumpf et al, 2003) have been proposed
different methods to estimate bathymetry. However, this
contribution focuses on the implementation of the linear
transform  algorithm to obtain satellite-derived
bathymetry as GRASS GIS module using python
scripting and R. Proposed GRASS GIS module
(i.image.bathymetry) automates the bathymetry
estimation directly from multi-spectral bands.

2. Materials and Methods

Python scripting in GRASS and PyGRASS is
powerful interface to call python functionality in to
GRASS. iimage.bathymetry module is also using
existing GRASS scripts and R packages. Main
functionalities of the module are delineating water region,
atmospheric and water column correction, Geographical
Weighted Regression (GWR). R package called ‘GWmodel’
has been used to estimate GWR between corrected
spectral bands as independent variables and calibration
depth points as dependent variable.
2.1 Delineating water region

Delineating  water visual

region  without

interpretation is potential to produce error. To prevail
over this problem rule based combination of NDVI and
band ratio between green band and infrared band was
used. NDVI has used to delineate water from land. Band
ratio has used to separate the delineated water from
clouds, ice etc (Vinayaraj et al, 2015). GRASS module
‘r.mapcalc’ has been used to delineate the water region.
2.2 Atmospheric and water column correction

The radiance observed by a satellite sensor on
shallow water basically consists of four components,
namely, atmospheric scattering component, surface
reflection component, in-water volume scattering
component, and bottom reflection component. This study
adopted more refined way of retrieving bottom
reflectance originally proposed by Lyzenga et al (2006).
Assumes that algorithm can effectively eliminate
components except bottom reflectance. The following
definition of Lyzenga et al’s algorithm is used for
correction.

X(A); =log (LA; —ag — a; (LANIR/LY)) (1)

Where, X(\)i is the transformed radiance, L\
spectral radiance of shallow water pixel (area of interest),
ao and a1 are coefficients estimated by least squares
using the Lo(d) and LANIR values of the deep-water
pixels. Using the estimated values of ao and a1 for the
shallow-water pixels, we evaluate XQ); of the
shallow-water pixels for each band by using the equation
(1). GRASS module r.mapcalc has used to compute the
equation (1).
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Figure 1. Flowchart of workflow of i.image.bathymetry.

2.3 Geographical Weighted Regression

The transformed radiance (X(1)1) has been generated
from all the visible bands (equation 1), and is assumed
that the transformed radiance is linearly related to the
depth and water attenuation coefficient. Thus we will
apply a linear least square regression between LiDAR
depth and transformed radiance to estimate coefficients.
Further, these coefficients have been used to estimate the
depth. R package (GWmodel) has been used to compute
GWR with adaptive bandwidth functionality. Since
‘GWmodel’ is memory consuming, big data cannot process
in low memory computers. Computer memory
specification also should be increased to use the adaptive
GWR. Therefore, in the computers that cannot process
‘GWmodel’ due to low memory will use ‘r.gwr’ module in
GRASS to compute GWR with fixed bandwidth
functionality. Workflow of the i.image.bathymetry has
shown in Figure 1.

3. Results and Discussion

The module has been tested and evaluated with
many study areas with different satellite images
irrespective spatial, radiometric resolution and size of
the data. In this study we demonstrate bathymetry
estimation in coastal area of Iwate prefecture, Tohoku,
Japan (Figure 2).

Freely available Landsat8 data has been used
estimate bathymetry using 500 depth points surveyed by
echo sounder. SWIR band (1.57-1.65um) has been used as
‘band for correction’. All the available multispectral
bands in the visible domain have been used for
estimation. Figure 3 screenshot  of
iimage.bathymetry showing details of required input
data, optional input data of i.image.bathymetry and the
resulted bathymetry. The domain extent of the
bathymetry estimation is set from the input calibration
points. Therefore, the limited calibration points given by
the user should cover the entire region need to be
estimated. Evaluation of the result has been carried out
by comparing the estimated bathymetry and echo
sounder depth data which is not used for estimation.
Result illustrate that the module produces good accuracy
bathymetry in terms of correlation coefficient (R=0.96),
coefficient of determination (R2=0.92) and Root Mean
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Figure 2. Study area used to test the module.
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Figure 3. Screenshot of i.image.bathymetry

Square Error (RMSE =1.17m).

4. Conclusion

There are several methods to estimate near-shore
bathymetry from satellite images, but there is not much
software to automate the estimation procedure. Therefor
this study implements a module in open source GIS
software (GRASS GIS) using python scripting and R.
Study demonstrates good performance of the module
using a case study. Results of this case study is
suggesting that the developed module reliable to
automate near-shore bathymetry estimation over any
other study area, where the assumptions of bathymetry
estimation algorithm satisfies.
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