GIS を用いた柱状節理の亀裂パターン解析

高島愛果*·秋葉祐里**·井上昭夫***·島弘幸****

GIS-based analysis of crack patterns in columnar joint

Aika Takashima*, Yuri AKIBA**, Akio INOUE*** and Hiroyuki SHIMA****

*山梨大学 生命環境学部 環境科学科 Department of Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.

**山梨大学 大学院 生命環境学域 地域環境マネジメントコース Department of Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.

***熊本県立大学 環境共生学部 環境資源学科 Department of Environmental Resources, Prefectural University of Kumamoto 3-1-100 Tukide, Higashi-ku, Kumamoto 862-8502, Japan.

****山梨大学 大学院総合研究部 生命環境学域 Department of Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan. E-mail:hshima@yamanashi.ac.jp

キーワード: 亀裂パターン, 柱状節理 **Key words**: Crack pattern, Columnar joint

1. はじめに

沖縄県久米島町の東部,西奥武島の南海岸には,「畳石」 と呼ばれる奇形の岩場が拡がっている.多角形状の岩が隙 間なく整然と並んでいるこの岩場は,柱状節理の一種と言 われている.柱状節理とは,マグマが急速に冷やされた際,マ グマの体積収縮と破断によって生じる岩石の角柱状パター ンである.こうした体積収縮に起因する多角形状の亀裂パ ターンは,干上がった田んぼや河床でもしばしば観測され る.ここで興味深い点は,体積収縮の駆動力が柱状節理(=冷 却に伴うマグマの固化)と干ばつ土壌(=粒子間に働く毛管 力)で異なるにも関わらず,両者が酷似した多角形パターン を示す点である.(Goehring, 2013)こうした亀裂パターン の形成メカニズムに関しては,干ばつ土壌に対する研究議 論が近年活発に展開されている一方で,柱状節理について は未だわかっていない部分が多い.

柱状節理は、アメリカの Devils Tower やイギリス・北アイ ルランドの Giant's Causeway など、さまざまな国に存在す る.中でも畳石は、表面が波の浸食を強く受けたため全体が, ほぼ平坦であり世界的に珍しい大規模・平面型の柱状節理 である.しかし意外なことに、畳石の亀裂同士の間隔や多角 形の形状については、過去に調べられた例がない.こうした 亀裂パターンの測定と解析は、地質学的な基礎データの収 集という意味で重要である.さらに亀裂パターンの幾何情 報を解析することで、過去から現在に至る地質の変動履歴 を推測することができる.以上の背景を受け本研究では、こ の畳石全体に拡がる亀裂パターンの幾何学形状を統計的に 解析した.

2. 方法

2016 年 11 月 26 日(土)・28 日(月)の二日間,ドローン (Phantom 4, DJI 製)を用いて高度 10 m から岩場全体を 撮影した.ドローンで撮影した 496 枚の空撮画像から, PhotoScan Professional 1.2.6 (Agisoft 社)を用いて,4枚の

第1図 ドローン空撮による畳石のオルソ化写真

第2図 ArcGIS によるオルソ画像の幾何情報解析

オルソ画像を作成した.これらのオルソ画像から、山梨大学 既設の地理情報システム ArcGIS 10.4.1(ESRI 社)を用いて 画像解析を行い、多角形のセル面積、辺の長さ、位置座標、 亀裂同士の分岐角を算出した。

3. 結果

第3図 解析対象とした4つの幾何学量

第4図 多角形の頂点数のヒストグラム

	面積	分岐角	辺の長さ
平均值	2.52(m ²)	118	1.04(m)
最頻値	2.2(m ²)	120	0.85(m)
標準偏差	1.15(m ²)	28.8	0.43(m)
相対標準偏差	0.45	0.24	0.41

第1表 幾何学量の解析結果

解析対象とした 4 つの幾何学量に関する解析結果を第 4 図と第1表に示す. 第4図より,岩場全体における全多角形の総数は,1,543 個となった.中でも五角形と六角形のものが多く,全体の75%を占めていることがわかった.

4. 考察

今回調べた幾何学量を先行調査結果と比較した.第5図よ り多角形の頂点数に着目すると,多角形の形状は五角形と 六角形が多い.中でも Craters of the Moon (アメリカ・アイ ダホ州)では五角形のみが多く,Giant's Causeway (イギリ ス・北アイルランド)では六角形のみが多い.また, Devil's Postpile (アメリカ・ワイオミング州)では,五角形と六角形 がほぼ同じ割合で含まれており,畳石とよく似た傾向を示 している. (Budkewitch and Robin, 1994)

こうした多角形分布の実測データから想起される疑問は, そもそもなぜマグマの体積収縮が空間的秩序の高い亀裂パ ターンを生み出すのか,そのメカニズムに対する疑問であ る.この問題に対しては、構造地質学の分野で多くの議論が 交わされており,野外観察(Aydin, 1988; DeGraff, 1987),理 論 研 究 (DeGraff, 1993;Budkewitsch, 1994;Grossenbacher, 1995; Saliba, 2003; 廣部, 2016), およ び実験研究(Ryan, 1981)の成果が過去に報告されている. たとえば Weaire ら(1983)によれば,多角形パターンの解析 にあたっては、冷却マグマの表面および底に生じる初期亀 裂の内部伝搬に注目する必要がある.地中から噴き出た熱 いマグマが,海水や大気への放熱によって冷えた際,最初に ひび割れるのは水や空気に接する外側表面である.この表 面に生じる初期亀裂は空間的にランダムであるが, 亀裂が マグマの内側へ進展するに従い,隣接する亀裂が互いに融 合して秩序だった多角形パターンを形成するといわれてい る(Hofmann, 2015). さらに Grossenbacher ら(1995)によ れば,冷却マグマ内側の亀裂間隔(もしくは多角形面積)の平 均値は,冷却速度に反比例するとされている.この仮説の 妥当性は,澱粉スラリーを乾燥収縮させて行われた模擬実 験でも追認されており,体積収縮が速い場合(または遅い場 合)には五角形(六角形)パターンが支配的となることが報告 されている(Toramaru, 2004; 秋葉, 2016).

第5図 世界の柱状節理の頂点数のヒストグラム (Budkewitch and Robin, 1994)

よって,現存する柱状節理の幾何パターンを実測・解析す ることで,遠い過去に起こった亀裂進展時におけるマグマ 内部の伝熱機構を推測できる可能性がある.火山国である 日本には多くの柱状節理があるが,こうした多角形パター ン解析を通した亀裂メカニズム考察は,著者らの知る限り 報告例がない.今後は国内で観測される様々な柱状節理に 本手法を適用し、幾何形状に関するデータベースの構築と 内部破断機構に関する新たな知見の獲得を試みる予定であ る.

5. 参考文献

- 秋葉祐里,島弘幸 (2016) 日本物理学会講演概要集, vol.71, pp.3307 (22aPS-97).
- Aydin, A., and DeGraff, J. M. (1988) *Nature*, vol.239, pp.471-476.
- Budkewitsch, P., and Robin, P. (1994) J. Volcanol.
- Geotherm. Res., vol.59, pp.219-239.
- DeGraff, J. M., and Aydin, A. (1987) *Geol. Soc. Am. Bull.*, vol.99, pp.605-617.
 DeGraff, J. M., and Aydin, A. (1993) *J. Geophys. Res.*,
- vol.98, pp.6411-6430.
- Goehring, L. (2013) Phil. Trans. R. Soc. A., vol.371, pp.20120353_1-18.
- Grossenbacher, K. A., and McDuffie, S. M. (1995) J. Volcanol. Geotherm. Res., vol.69, pp.95-103.
- 廣部紗也子,小國健二(2016)計算工学講演会論文集, vol.21, 6p, 2016-05.
- Hofmann, M., Anderssohn, R., Bahr, H-A., Weiß, H-J., and Nellesen, J. (2015) *Phys. Rev. Lett.* vol. 115, pp.154301_1-5.
- Phillips, J. C. Humphreys, M. C. S., Daniels, K. A., Brown, R. J., and Witham, F. (2013) Bull. Volcanol., vol.75, pp.715_1-17.
- Ryan, M. P., and Sammis, C. G. (1981) *Geophys. Res.*, vol.86, pp.9519-9535.
- Saliba, R., and Jagla, E. A. (2003) J. Geophys. Res., vol.108, pp.2476_1-7.
- Toramaru, A., and Matsumoto, T. (2004) J. Geophys. Res., vol.109, B02205_1-10.
- Weaire, D., and O'Carroll, C. (1983) *Nature*, vol.302, pp.240-241.