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1.  Introduction 
Geostatistics is founded on its pioneer methods 

developed by Krige and Matheron in 1950’s and 1960’s, 

whose works aimed to estimate values of random 

variables in unknown locations using spatial linear 

regression approaches, called kriging techniques (Olea, 

2003). These methods provide the most likely value at 

every cell in the model as their outcome. Such methods 

are known to smooth the data because the kriged values 

have less variability than the original data from which 

they were calculated (Deutsch, 2002). Stochastic 

methods have been turned out to bring light to aspects 

which traditional geostatistical techniques do not 

properly cover, such as the assessment of uncertainty 

innate to their proposed models. Uncertainty may be 

understood as the error associated with the model. These 

methods yield numerous equiprobable realizations as 

their results and the data variance tend to be honored 

and are preferable approaches to deal with 

heterogeneous environments. 

Based on those background, this study aims to 

compare the effectiveness of two different stochastic 

methods, Sequential Gaussian Simulation (SGS) and 

Turning Bands Simulation (TBSIM), for a spatial 

modeling of metal concentration in a hydrothermal area.  

Both methods are conditional simulations, i.e., the 

original data values can be reproduced at their location. 

SGS is regarded as fast and straightforward due to the 

modeling of a Gaussian conditional cumulative 

distribution function (ccdf) at each location and the need 

of solving only a single cokriging system there (Chilès 

and Delfiner, 1999), whereas TBSIM simulates the 

variable along 1-D lines and then combined into a 3-D 

model: one of its main advantages is to handle with 

non-stationary data which SGS does not consider 

(Deutsch, 2002). Since stochastic methods provide 

several equiprobable scenarios, the modeler must select 

one or few of them to present as reality’s illustration. To 

make the best informed decision, this professional may 

use the assessment of uncertainty of each realization 

and its expected spatial distribution, once a conceptual 

model, also known as Empirical model, of the geologic 

structure of target area was previously designed. These 

criteria are also applied not only to decide which the best 

model of each conditional simulation methods fits better 

but also which method is more indicated for the current 

study area, a volcanogenic massive sulfide (VMS) deposit 

type in the seafloor under survey. This type of deposits 

account for important source of economic mineral, to wit: 

Zn, Cu, Pb, Ag, and Au. 

Due to their capacity to quantitively characterize the 

spatial distribution of grades and physical parameters of 

lithotypes, the importance of numerical models in 

targeting potential areas for mineral exploration cannot 

be overstated. 

2.  Model Domain and Dataset 
Fig. 1 depicts the 250mx700mx300m model’s domain 

located around 1500m below sea level (mbsl). This area 

is rich in Ba-Zn-Pb according to previous geochemical 

studies. Logarithm values of Pb concentration are used 

as input data for implementing SGS and TBSIM, which 

were sampled from six boreholes (black dots) practically 

distributed along the E-W direction, with variable 

lengths from 46m (borehole 1) to 180m (borehole 3). 

The borehole 1 was drilled in a mound and is 

considered as a discharge zone of the hydrothermal 

system, whereas borehole 6 presented few evidences of 

sulfide and altered material in its sample core 

descriptions and geochemical analysis, being more likely 

a recharge zone. Core descriptions were used to identify 

shear zones, such as presence of breccias and lack of 

hydrothermally altered materials. 

3. Methods 
The same semivariogram model was set for both 

conditional simulations. However, in order to reach the 

best cross-validation score and preserve the data 

variance, different search neighborhoods were adjusted. 

The following subsections briefly describe the main 

characteristics under SGS and TBSIM.  

3.1. Sequential Gaussian Simulation (SIS) 

As Olea (1999) succinctly describe, SIS method 

consists of generating a partial realization using 

multivariable normal random function where its kernel 

dwells in drawing from this multivariate distribution 

and drawing from a sequence of univariate distributions 

are conditioned to univariate realizations. That is, its 

principle is to sequentially draw the value at each new 

simulated point from the conditional distribution 

through the data and the values simulated previously 

(Chilès and Delfiner, 1999). 

3.2. TBSIM 

The principle of TBSIM is to produce a non-conditional 

simulation at first. That is, yielding a map that reflects 
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the variogram, but the data is not honored. Afterwards, 

in order to correct it, a map is obtained by interpolating 

the experimental error between the measured data and 

non-conditional simulated value at each data point 

(Chilès and Delfiner, 1999). 

 

 
Fig. 1: Dimension of study area and its spatial distribution of 

boreholes (black dots). 

 

3.3. Method Evaluations 

To assess which method, SGS or TBSIM, is more 

suitable for the current study area, the best model must 

fit to empirical model and its uncertainty. The former 

can be based entirely on facts, such as field observations, 

geochemical and geophysical data, or theoretical based 

on conceptual ideas generally borne out of experience 

and knowledge, and extrapolation from known mineral 

districts (Pirajno, 2009). Regarding the latter, such 

model must reproduce the first- and second-order 

statistics of the conditioning data, the histogram, and 

variogram of the samples (Deutsch and Journel, 1998). 

4.  Results and Discussion 
The set semivariogram is considered as 

omnidirectional along XY with a normal component to 

this reference plane. Applying the spherical model, its 

nugget effect is 0.3186. Considering the plane XY, its 

range and sill are 100 m and 0.34, respectively, while, for 

its normal component, its range is 112m and sill is fixed 

to 1.32. As Chilès and Delfiner (1999) asserts SGS tends 

to show much shorter range than the domain, a 

suggested and followed solution was to set a larger 

neighbourhood. In spite of the cross-validation scores for 

both SGS and TBSIM reached similar values, 0.80 and 

0.82, respectively, increasing the neighbourhood implies 

a higher risk of estimating the mean values of the 

samples, which decreases the variability of realization 

outcomes. Even cautiously setting all parameters, SGS’ 

outcome realizations presented lesser variability and are 

not consistent with the first- and second-order statistics 

of the original data contrasting with their TBSIM’s 

counterparts. 

Fig. 2 illustrate three cross-sections along E-W, where 

the conceptual model (Fig. 2A) shows the expected 

lithotypes distribution, and Figs. 2B and 2C represent 

the spatial distribution of log (Pb) of SGS’ and TBSIM’s 

realizations respecting the assessment of their outcomes. 

SGS method depicts better the concentration of higher 

values in the sulfide layers as well as in the mound. On 

the other hand, TBSIM properly reflects locations with 

lower values of the random variable. 

5.  Conclusion 
Both methods have their own merits. SGS is 

straightforward and not a time-intensive method. 

Conversely, sequential simulations tend to yield 

smoothed outcomes. TBSIM may be considered as a 

powerful tool to depict the spatial distribution of metal 

concentrations in a deposit, once TBSIM broadly 

preserves the characteristics of original data. 
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Fig. 2: Cross-sections along E-W in which (A) illustrates the 

conceptual model of study area, and (B) and (C) depict spatial 

distributions of log (Pb) using Sequential Gaussian Simulation 

(SGS) and Turning Bands Simulations (TBSIM), respectively. 
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