地中ガスラドン濃度の時空間変化に基づく地熱流体パスの特定:2つの インドネシア地熱地区でのケーススタディ

渡邉 雄平*・久保 大樹*・Putri Aprillia**・Andy Yahya Al Hakim**・Irwan Iskandar** 小池 克明*

Identifying geothermal fluid paths using spatio-temporal variation of radon concentration in soil gas: Case study of two geothermal fields in Indonesia

Yuhei Watanabe*, Taiki Kubo*, Putri Aprillia**, Andy Yahya Al Hakim**, Irwan Iskandar** and Katsuaki Koike*

*京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2, Kyoto 615-8540, Japan. E-mail: koike.katsuaki.5x@kyoto-u.ac.jp

**バンドン工科大学 Institute of Technology Bandung, Indonesia, Jl. Ganesha 10, Bandung 40132, Indonesia.

キーワード:地熱貯留層, ラドン濃度, 時間変化パターン, Wayang Windu 地区, Patuha 地区, 地熱資源探査

Key words: Geothermal reservoir, Radon concentration, Temporal change pattern, Wayang Windu area, Patuha area, Geothermal resource exploration

1. はじめに

地熱発電には年間を通した設備利用率が高く,二酸化 炭素排出量も少ないという利点があるため,世界でも開 発・利用の促進が進められている.しかし一方で,開発リ スクが高く,調査のためのボーリングなど導入までのコ ストにより発電単価が高くなってしまうという課題を抱 えている.地熱開発では,地熱貯留層に連なり熱水の通 路となる透水性亀裂(地熱流体パス)の位置と空間分布 が重要となる.この透水性亀裂を地表での調査によって 特定し,空間分布形態まで推定することができれば,大 幅な開発コストの削減が期待できる.

そこで、本研究では透水性亀裂の空間分布を推定する ために、地化学探査の一種であるラドン探査に着目した. ラドンガスは火山ガス中に多く含まれており、その化学 的性質から、熱水パスの抽出に有効であるとされている

(Koike et al., 2014). 噴気や温泉などの地熱兆候が確認 される地熱地域において地中ガス中のラドン濃度測定を 実施し,その結果から熱水パスを抽出することを目的と するとともに,地熱資源探査におけるラドン探査の有効 性も明らかにする.

2. 対象地域

インドネシア西ジャワ州の州都であるバンドンの南方 約35 km に位置する Wayang Windu 地区,およびその西 方約40 km に位置する Patuha 地区を本研究の対象地域に 選んだ(第1図).いずれの地区も噴気や温泉など明瞭な 地熱兆候が複数存在しており,地熱発電所が既に稼働中 である. Wayang Windu 地区では平成 28 年より, Patuha 地区では平成 30 年より継続的なラドン濃度のモニタリ ング測定を実施している.

3. 地中ガスラドン濃度測定方法

ラドン濃度測定には半導体型ラドン測定器 (Durridge 社製 RAD7)を用いた.本装置はラドン核種やその娘核 種が放射性崩壊する際に放出する α粒子のエネルギー量 を測定し、ラドン濃度 (Bq/m³) に換算する.

Wayang Windu地区では,深度2~5m程度の計測井を計 24箇所に設置し,約2年の間に各測点で3~5回の計測を実 施した.測定では土壌中のガスをポンプで吸引し,5分間 を1サイクルとして,4~6サイクルを繰り返す.Wayang Windu地区における測定結果の一部は,久保ほか(2018)

第1図 Wayang Windu 地区と Patuha 地区の位置

第2図 Patuha地区におけるラドン測点と航空写真の重ね合わ せ.主要な噴気帯と発電所を併せて図示する.

第3図 Wayang Winduにおけるラドン濃度の時間変化の典型的 な例. 左図は急増した後に急減するパターン,右図は 急増し,濃度が一定に保たれるパターン.

で報告している. Patuha地区では,最大2mの計測井を10 箇所に設置し,各測点で2~3回程度の測定を実施してい る.いずれも5分間を1サイクルとして4~10サイクルを繰 り返した. Patuha地区での測点を第2図に表す.

4. 結果と考察

4.1 Wayang Windu地区

全24 測点における測定結果から、ラドン濃度の時間変 化は、短時間で急増後に急減する(Type A)、急増後に一 定の濃度を保つ、または微増を続ける(Type B)という 二つのパターンに大別できることが明らかになった(第 3 図). Type B の時間変化を示す測点は比較的ラドン濃度 が高いことから、地下に地熱流体パスが存在し活発なガ ス流動が生じていることが考えられる.さらに同一測点 でも測定時期によって濃度や時間変化の傾向に変化が見 られ、これらは雨季・乾季における土壌の状態や気温変 化などの影響によるものと考えられる.

4.2 Patuha地区

Patuha地区では断層の交点や生産井近傍の計10箇所で ラドン濃度測定を実施した.計測井の深度が異なるため 濃度の直接的な比較はできないが,第4図に表すように Wayang Windu地区と同じく時間変化のパターンは二つ に大別することができた.

第4図 Patuha地区での特徴的なラドン濃度変化のパターン.

代表的な例としては、断層上のPA02がType A、温泉近傍 のPA04と生産井近傍のPPL07がType Bを示した.PPL06は Patuhaにおける最大濃度を示しており、Wayang Windu地 区と同様に主要な地熱流体パスの存在がラドン濃度の特 徴に現れていることが考えられる.また、Wayang Windu 地区にはない特徴として、PPL07でモニタリング測定開 始前の予備調査時と比較して5~10倍ほどのラドン濃度 の上昇が確認された.この期間に気候的な変化はほとん どなかったため、別の要因によって地中ガスの流動状態 の変化が生じたことと想定される.その一つとして、両 者とも生産井に近いことから、生産蒸気量の変化が影響 している可能性が高い.

5. まとめ

本研究では、地熱資源探査において重要となる地熱流 体パスの抽出に対するラドン探査の有効性を示すために、 明瞭な地熱兆候が確認されるインドネシアの2地区にお いて地中ガス中のラドン濃度測定を実施した.計30箇所 以上の測定結果から、ラドン濃度の時間変化が、急増後 に減少するパターンと一定に保たれるパターンの二つに 大別できることが明らかとなり、後者のパターンを示す 測点は地熱流体パスの存在が示唆される.さらに、気候 やその他の要因によると考えられる濃度の時期的な変化 も確認された.このような濃度の変動要因を明らかにす ることで、より精度の高い地熱流体パスの抽出と地熱資 源量の推定が可能になると考えられる.

文 献

- Koike, K., Yoshinaga, T., Asaue, H. (2014). Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: A case study from Mt. Aso, southwestern Japan. *Journal of Volcanology* and Geothermal Research, 275, 85-102.
- 久保大樹・北村将悟・イスカンダル イルワン・ヘリアワン モ ハメド・ノトシスウォヨ スダルト・小池克明・櫻井繁樹 (2018)地中ガスラドン濃度の時間・季節変化に基づく地熱 地域での蒸気スポット検出の可能性.資源・素材学会平成 30 年度春季大会(東京)講演要旨.