
Machine Learning Application to Delineating Metal-rich Veins 

Vitor Ribeiro de Sá* and Katsuaki Koike* 

*Graduate School of Engineering, Kyoto University, Katsura C1–2, Kyoto 615–8540, Japan.

E–mail: ribeirodesa.vitor.7c@kyoto-u.ac.jp; koike.katsuaki.5x@kyoto–u.ac.jp 

Key words: Hierarchical clustering, Epithermal deposit, Au–Ag mineralization, Geologic model

1. Introduction
Geological/geostatistical domain definition plays a

pivotal role in mineral resource modeling. Machine 

learning (ML) techniques, such as cluster analysis, has 

been gained notoriety in earth science for their versality 

to furnish tools to handle sparse information in wide 

areas. ML and field studies can act in concert to improve 

the understanding of geological phenomenon. 

This study aims to apply hierarchical clustering 

analysis (HCA) to a real geochemical data set from a 

low-sulfidation gold deposit. Such type of deposits 

account for significant occurrences of Au and Ag, besides 

base metals (i.e. Cu–Pb–Zn) (Pirajno, 2009). HCA can 

yield categories that assemble data with similar 

characteristics, chemical-wise. As it turns out, veins and 

veinlets, where higher Au–Ag concentrations are hosted 

in this deposit, can be identified. Highlighting these 

features aids effective field survey and provide elements 

to carry out geostatistical models in order to delineate 

target areas for future exploration in the study area. 

The next sections introduce the study area and set out 

the methodology and its perks to the current study case. 

Besides, the results are presented and discussed. 

Although the methodology is applied to a specific 

environment of this study, HCA can be widely used for a 

myriad of geological contexts. 

2. Study Area and Dataset
The Sirawai deposit, Mindanao, Philippines was

selected as a case study area. The target zone is set in a 

200 m  210 m hilly field, elevation 280–330 meters 

above sea level (masl), where 56 drill sites (black dots) 

collected samples to analyze Au, Ag, Cu, Pb and Zn 

grades (Fig. 1a). This field is marked for several 

subparallel sulfide-quartz veins of 300–500 m length, 

which their strike 20–30° NW and dip 60–70° SW with 

the 1.0–5.1 m width and the average 2.5 m can be 

observed. Such structures host the greatest Au and Ag 

grades in the area. 

The proposed methodology uses Au and Ag grade 

measurements, given in g/t, in varied depths. Fig. 1b 

shows the location of 56 drill sites and the length of the 

drill holes, 46 vertical holes (5 – 50 m depth) and ten 

inclined holes (70 m length) at dip 60°. The samples are 

separated by 1 m interval. Both precious metals are 

correlated in this deposit (linear correlation coefficient ρ 

= 0.69). Au grades varies from nearly zero to 183.3 g/t 

(average 0.46). Ag presents wider variation, from 0.01 to 

1141 g/t (mean 12.75 g/t). According to the highest values 

of log (Au), the main occurrences of Au–Ag mineralized 

bodies are situated in the middle study area. 

Figure 1. Dimension of study area and its spatial distribution of 

drill sites. (a) Detailed topography of the study area with 56 

drill sites (black dots), and (b) 3D representation of the drill 

sites and holes lengths and log (Au) concentrations. 

3. Methods
3.1. General structure of methodology 

The proposed methodology assembles Au–Ag available 

data into relatively homogeneous groups or clusters. The 

members of a cluster are at once alike and at same time 

unlike members of other groups. To attain this goal, 

firstly, Au–Ag data are log-transformed, and their 

correlation is statistically verified. In sequence, HCA is 

applied to assign samples that are Rich, Intermediate 

and Poor in Au and Ag grades. The following subsection 
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briefly describe the main HCA characteristics and the 

cluster number selection criterion. 

3.2. Hierarchical Clustering Analysis (HCA) 

HCA is an unsupervised machine learning technique 

which joins the most similar observations, then 

successively connects the next most similar observations 

to these. The similarities of all pairs of observations are 

calculated in a square matrix. Those pairs that share 

more similarities are merged, and the matrix is 

recomputed. Such procedures are run by averaging the 

similarities that the combined observations have with 

other observations. This process iterates until the 

similarity matrix is reduced to 22 (Davis, 2012). The 

“elbow” method is used to select the optimal number of 

clusters. Such method consists in graphically observing 

the magnitude of inertia considering number of clusters. 

Inertia is the sum of squared distances of samples to 

their closest cluster centers. 

4. Results and Discussion
The point after which the inertia start decreasing in a

linear fashion is deemed the elbow point (Fig. 2a). Thus, 

for the given data, we conclude that the optimal number 

of clusters is three: Poor (purple), Intermediate (yellow) 

and Rich (green) (Fig. 2b). 

Poor cluster is impoverished in both precious metals 

and represents roughly 31% of the samples. Gold grades 

range from 0.001 to 0.2 g/t (mean 0.02 g/t) while silver 

values vary from 0.01 to 5.0 g/t (average 1.85 g/t). 

Cluster considered as Intermediate occurrence of these 

metals has minimum grades approximately 0.1 g/t and 

its maximum grade is 0.8 g/t, mean 0.11. Intermediate 

grades of Ag ranges from 0.9 to 74 g/t, mean 8.07 g/t. 

These samples are the most representative among the 

data, approximately 57%. The most enriched samples in 

Au and Ag are encompassed by cluster Rich and 

accounts for nearly 11% of the total data. Au minimum 

grade is 0.15 g/t and reaches 183 g/t, averaging 3.54 g/t. 

Ag ranges from 5.9 to 1141 g/t, mean 67.65 g/t. 

Cluster Rich is more conspicuous in shallow parts over 

the area. However, in the central region of the study 

area its occurrence takes place in deeper parts, which 

suggest the nested geological structures (i.e. veins and 

veinlets). Impoverished samples (cluster Poor) are 

relegated to deeper portions and more predominant in 

peripheral zones of the study area. These extreme 

clusters have no direct contact in the entire area. Cluster 

Intermediate plays as a buffer zone between Rich and 

Poor clusters. 

We interpret the cluster Rich as possible evidence of 

the sulfide quartz veins in central area and deeper zones. 

When this cluster takes place in shallow zones and 

adjacent regions of the study area, it can be soil enriched 

by weathering. Cluster Intermediate is regarded as 

hydrothermal alteration halos when it is situated near 

Au–Ag rich veins whereas regions or zones slightly 

affected by hydrothermal activity, otherwise. On the 

other hand, Cluster Poor stands for the regions or zones 

where hydrothermal did not take place or its influence 

was weak. 

5. Conclusion
The HCA application is demonstrated to be effective

for classifying the samples of precious metals (gold and 

silver) grades. In addition, this methodology aids to gain 

insight into vein continuities in subsurface. HCA can 

contribute to (a) yield categorical data and (b) support 

the construction of geological models using geostatistical 

methods, e.g. sequential indicator and pluri-Gaussian 

simulations as de Sá et al. (2021). 
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Figure 2. (a) Plot of inertia gains of hierarchical clustering 

results, (b) Biplot of log(Au) and log(Ag) showing cluster 

features, and (c) 3D representation of the cluster spatial 

distribution. 
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