曳航・海底受信機で測定された CSEM データの統合逆解析による 海底熱水鉱床の比抵抗イメージング向上

石須慶一*・笠谷貴史**・後藤忠徳*・小池克明***・シリポンバラポンウィラシャイ****・岩本久則*****

Improvement of resistivity imaging of seafloor massive sulfides by inversion of combined CSEM data of towed and ocean bottom receivers

Keiichi Ishizu^{*}, Takafumi Kasaya^{**}, Tada-nori Goto^{*}, Katsuaki Koike^{***}, Weerachai Siripunvaraporn^{****} and Hisanori Iwamoto^{*****}

*兵庫県立大学大学院理学研究科 Graduate School of Science, University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280 JAPAN. E-mail: k.ishizu@sci.u-hyogo.ac.jp

**海洋研究開発機構海底資源センター Japan Agency for Marine-Earth Science and Technology, Research Institute for Marine Resources Utilization, Kanagawa, Japan.

***京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2, Kyoto 615-8540, Japan.

****マヒドン大学理学部 Faculty of Science, Mahidol University, Rama VI Rd., Rachatawee, Bangkok 10400, Thailand.

- *****日本海洋事業株式会社 Nippon Marine Enterprises, Ltd., , 14-1, Ogawa-cho, Yokosuka, Kanagawa 238-0004, Japan.
- キーワード: 海底熱水鉱床, CSEM, 比抵抗, 電磁探査, 電気探査

Key words : Seafloor hydrothermal deposit, CSEM, Resistivity, Electromagnetic method, Direct current resistivity survey

1. はじめに

人工電流源海洋電磁探査(CSEM)法は,石油貯留層,海 底熱水鉱床などの探査に有効である.通常の CSEM 法では, 送信機を曳航し受信機を海底に設置する.近年は、送受信機 ともに曳航する観測配置も用いられてきた. 前者では様々 な送受信配置でのデータを取得でき、送受信距離を大きく することで海底下深部まで探査できる.一方,後者では送受 信距離がケーブルによって固定されているため、海底下浅 部の探査に有効である. 曳航および海底受信機で測定され た CSEM データの統合により両観測配置の利点を活かすこ とができる.実際に統合 CSEM データの二次元逆解析によ りガスハイドレートの分布が高解像度でイメージングされ た (Attias et al., 2018). しかし,二次元逆解析では,海底 設置受信機で取得された三次元データの扱いや三次元比抵 抗構造の再現は難しい. そこで、本研究では、曳航・海底受 信機で測定された CSEM データに三次元逆解析を適用し、 海底熱水域において浅部から深部までカバーした比抵抗構 造イメージングを行う.

2. CSEM 法の概要と利点

海底に設置された受信機で曳航された送信機から生じた CSEM データを取得する観測配置では、様々な送受信配置 のデータセットを取得できる(図1).送受信機間の距離を 大きくすることで、海底下深部まで探査することも可能で ある.さらに、送受信配置を三次元的に分布させることで海 底下の三次元構造を制約できる CSEM データを取得するこ とができる.一方、送信機・受信機ともに曳航しながらデー タ取得を行う観測配置では、水平方向に密なデータを取得 できる(図1).送受信機の位置を固定するため、送受信距 離が短いデータの測位誤差を軽減できる.その結果、送受信 距離が短い CSEM データを用いることができるため、海底 下浅部の探査に有効である.送受信機ともに曳航する海底 電気探査も行われており、海底下浅部の比抵抗構造を高解 像で再現できることが示された(Ishizu et al., 2019).

3. 仮想データへの適用結果

曳航および海底受信機で測定された CSEM データ三次元 逆解析の有効性を仮想モデルを用いて検証する. 仮想モデ ルは 0.1 ohm-m の低比抵抗異常体および 10 ohm-m の高 比抵抗異常体が1ohm-mの半無限媒質中に存在するモデル を仮定する (図 2). 低比抵抗異常体は海底熱水鉱床を,高 比抵抗異常体は海底火山岩を模擬している. 海底面の深度 はz=1000 mとし、海面をz=0 mとする。海水および空 気の比抵抗は、0.3 ohm-m、10⁸ ohm-m とする. 曳航受信機 は送信機から 50, 100, 150 m 後方に設置され, 6 つの受信 機が海底面に置かれた観測配置を考える. 使用したデータ の周波数は0.125 と 1.0 Hz である. このモデルから順解析 を行い得られたレスポンスに 3%のガウシアンノイズを加 えて仮想データを作成した. 三次元 Occam 逆解析コード (Ishizu et al., 2022) を用いて、作成した仮想データを海 底下比抵抗モデルに変換した(図 3). その結果, 曳航デー タでは、海底面の低比抵抗異常体は真のモデルに近く再現 できたが、埋没異常体は再現できなかった. 海底受信機デー タでは、海底面および埋没異常体ともに再現できたが、海底

面の異常体は偽像とともに再現された.一方,これらのデー タを統合した逆解析結果では,海底面および埋没異常体を 真のモデルに近く再現できた.

4. 実データへの適用結果

沖縄トラフ熱水域において,2017年10月に MEMSYS (Kasaya et al., 2018)を用いて CSEM 調査を行った.対 象地域では熱水活動が確認されており,自然電位異常も観 測されている(笠谷ほか,2020).そのため,本対象地域に おいて硫化鉱物体の存在が期待されている.MEMSYS で観 測された曳航・海底受信機 CSEM データに三次元逆解析を 適用した結果,海底面および海底下に低比抵抗異常が再現 された.これらの低比抵抗異常体は自然電位異常が確認さ れた領域と一致する結果が得られた.そのため,本低比抵抗 異常は硫化鉱物をイメージングできたと考えられる.

5. おわりに

曳航・海底受信機で測定された CSEM データの三次元逆 解析を開発した.仮想データを用いたテスト結果により,本 逆解析は海底下浅部および深部の比抵抗構造を真の構造に 近く再現できることが明らかとなった.次に,本逆解析を沖 縄トラフ熱水域で取得された CSEM 実データに適用した. 再現された低比抵抗異常は,自然電位異常と整合する結果 が得られた.この低比抵抗異常と自然電位異常の一致によ り,本逆解析は硫化鉱物を低比抵抗としてイメージングで きたと考えられる.以上の仮想データと実データに適用し た結果から曳航および海底受信機で測定された CSEM デー タの三次元逆解析は海底熱水鉱床周辺での海底下の比抵抗 構造の推定に有効であることが示された.

文 献

- Attias, E., Weitemeyer, K., Hölz, S., Naif, S., Minshull, T. A., Best, A. I., Haroon, A., Jegan, M., and Berndt, C. (2018) High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data, Geophysical Journal International, 214, 1701-1714.
- Ishizu, K., Goto, T., Ohta, Y., Kasaya, T., Iwamoto, H., Vachiratienchai, C., Siripunvaraporn, W., Tsuji, T., Kumagai, H., and Koike, K. (2019) Internal structure of a seafloor massive sulfide deposit by electrical resistivity tomography, Okinawa Trough, Geophysical Research Letters, 46, 11025-11034.
- Ishizu, K., Siripunvaraporn, W., Goto, T. N., Koike, K., Kasaya, T., & Iwamoto, H. (2022) A cost-effective threedimensional marine controlled-source electromagnetic survey: exploring seafloor massive sulfides. Geophysics, 87(4), 1-23.
- Kasaya, T., Goto, T. N., Iwamoto, H., and Kawada, Y. (2018) Development of multi-purpose electromagnetic survey instrument, In The 13th SEGJ International Symposium, Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, 159-161.
- 笠谷貴史・金子純二・岩本久則 (2020) 音響調査と自然電位 法を用いた海底熱水鉱床調査技術プロトコルに基づく調 査とその検証,物理探査,73,42-52.

第1図 海洋 CSEM 探査の模式図. CSEM 探査では, 深海に曳航 したダイポールアンテナから海水中に時間的に変化する電流を流 す. 電磁場応答を海底に設置された受信機で記録する.

第2図 仮想データを用いた試験に使用した比抵抗モデル.丸印は送信機,三角印は受信機の位置を示す.仮想モデルは0.1 ohm・mの低比抵抗異常体および10 ohm・mの高比抵抗異常体が1 ohm・mの半無限媒質中に存在するモデルを仮定する.低比抵抗異常体は海底熱水鉱床を,高比抵抗異常体は海底火山岩を模擬している.海底面の深度はz=1000mとし,海面をz=0mとする.

第3図 第2図の比抵抗モデルから作成した仮想データの逆解析 結果. (a) z = 1000 m (海底面), (b) z =1100 m における再現され た比抵抗モデルの断面図. 白実線は真の異常の境界を示す.