生成起源の異なるカオリナイトの鉱物・化学的性質と反射スペクトルの関連性

池内翔哉*・岸本将英*・久保大樹*・小池克明*・米田哲郎**

Mineralogical and chemical properties of kaolinite with different formation origins and their relation to reflectance spectra

Shoya Ikeuchi*, Masahide Kishimoto*, Taiki Kubo*, Katsuaki Koike* and Tetsuro Yoneda**

*京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2, Kyoto 615-8540, Japan. E-mail: ikeuchi.shoya.28x@st.kyoto-u.ac.jp (Ikeuchi) **E-mail: yone1005@gmail.com

キーワード: カオリナイト, 熱水変質, 風化変質, 吸収バンド, 粒径評価 **Key words:** Kaolinite, Hydrothermal alteration, Weathering alteration, Absorption band, Particle size evaluation

1. はじめに

リモートセンシングによる資源探査では、反射・放射スペク トルを用いて熱水変質鉱物を識別する手法が基本であり,カ オリナイトはその代表的な鉱物の一つである. カオリナイトは 斑岩銅鉱床においてフィリック変質帯周辺の粘土変質帯に 分布し、金鉱床や VMS 鉱床を対象としたリモートセンシング でも主成分として抽出されている(小池・古宇田, 2016).また, 近年火星の表層にもカオリナイトが確認され,火星での資源 調達可能性が議論されている.火星での現地調査が困難な 中,リモートセンシングは資源探査に最も有効な手法であり, カオリナイトは地球と同様の鉱床の存在可能性を示す重要な 鉱物となる.カオリナイトなどの粘土鉱物はフィロシアン期後 期(地球科学的年代区分で約45-40億年前)の層で観察され ており(Bishop et al., 2012), これらの鉱物が堆積する条件 として温暖湿潤な環境や酸性環境下での化学的風化,ある いは熱水活動が考えられている (Murchie et al., 2009; Bibring et al., 2006). しかし, 粘土鉱物の組成変化がいず れの条件で生じたのかは不明な点が多い.

さらに、リモートセンシングによる鉱床探査では複数の鉱物 の組み合わせを対象とするため、形成過程の違いによるカオ リナイト単体のスペクトル変化に着目した研究は少ない.そこ で本研究では、カオリナイトを指標としたリモートセンシングに よる鉱床探査の高度化を目的とし、日本とアメリカで採取され た風化変質および熱水変質起源のカオリナイトの鉱物組成・ 化学的性質の違い、およびそれらと反射スペクトルの関係を 明らかにした.

2. 研究方法

2.1 分析対象試料

本研究では、風化変質起源の試料として愛知県瀬戸地域 の本山水簸と朝日粘土の2種、熱水変質起源の試料として 6鉱山13種(鹿児島県春日鉱山、北海道千歳鉱山・轟鉱 山・南白老鉱山、青森県温川鉱山、アメリカ Goldfield)、これ に日本粘土学会参考試料を加えた計 16 種のカオリナイトを 用いた.各試料名を第1図に示す.測定条件を揃えるためジ ョークラッシャーで粉末状にした後,可視域から短波長赤外 域(0.35~2.50 μm)における反射スペクトルを分光光度計 (ASD FieldSpec 4)によって測定した.また,バンド比演算に よって反射率の吸収を強調し,各試料の反射率の特徴を比 較した.さらに,一部の試料については XRF で元素濃度, XRD で鉱物組成を分析し,シェラー式を用いて試料間の鉱 物粒径比を計算・比較した.

2.2 バンド比演算による反射スペクトル解析

バンド比演算はマルチスペクトル画像の解析で用いられる 代表的解析手法で,吸収バンドを分母においた計算によっ て反射率の吸収(低下)を強調する.0.35~2.50 µm の波長 帯において,カオリナイトは 1.4 µm 付近に OH 基による吸収 帯,2.16~2.22 µm に Al-OH による吸収帯を有する(小池・ 古宇田,2016).本研究では TERRA 衛星搭載の ASTER センサ画像解析で用いられるバンドの組み合わせを参考に 解析を行った.カオリナイトを識別するバンド比としては Kalinowski and Oliver(2004)による(B4+B6)/B5 や B7 /B5(B:バンド,以下同様)などの 5 種類の指標を用いた. なお,ASTER 画像はバンド幅が 0.04~0.10 µm であるのに 対し,解析する反射スペクトルデータは波長分解能が 0.001 µm であるため,各バンドの代表値をバンド比演算に用いた.

2.3 シェラー式による粒径評価

反射スペクトルは鉱物の結晶構造や粒度等と密接に関係 する.そこで,XRDの回折ピークを用いた粒径評価を行った. 粉末X線回折法による粒径評価は,結晶が小さくなると回折 ピークの幅が広がるという現象に基づき,回折ピークの幅の 広がりを評価することで「結晶の小ささ」を評価する手法であ る(井田・虎谷,2003).回折線幅Bと結晶粒径Dの間に成り立 つ関係はシェラーの式(1)で示される(Scherrer,1918).

$$D = \frac{K\lambda}{B\cos\theta} \tag{1}$$

ここで、K はシェラー定数、 λ は X 線の波長、 θ はブラッグ

角(回折角ピーク位置の半分の値)である.カオリナイトは20 = 12.3°,23.8°付近で主なピークを示す.本研究では各試料の 相対的な結晶粒径の比較を目的とし結晶粒径比を計算した.

結果および考察

3.1 バンド比演算結果および考察

5 種類のバンド比演算のうち(B4+B6)/B5の結果を第1 図に示す.参考試料の値が最も大きく,斑岩銅鉱床の試料 (gf19-1, vf3-1, vf3-2)の値がこれに次ぐ.また,轟-TD4 や 南白老-MS41の値が,同じ鉱山起源の試料に比べて大きい という特徴が見られる.このような特徴は Al-OH の2 次吸収 に相当する B5(2.145µm ~2.185µm)での吸収が大きいこと による.バンド比の大きい(吸収が大きい)試料は他の試料に 比べて白色のものが多く,不純物が少ない.よって,試料全 体におけるカオリナイトの含有割合が高いほど反射率の特徴 が顕著に現れると考えられる.なお,風化変質起源の試料 (本山,朝日)と,浅熱水性鉱床(春日,千歳,轟)および黒鉱 鉱床起源(南白老,温川)の試料で大きな差異は認められな かった.

3.2 結晶粒径比の計算結果および考察

シェラー式による鉱物結晶粒径比の計算結果を第2図に 示す.風化変質起源の試料(本山,朝日)の粒径が熱水変質 起源の試料に比べて粒径が小さいという結果が得られ,形成 過程の違いが結晶粒径に関係することが分かった.一方で 鉱床タイプの違いによる粒径の差は小さく,熱水変質を受け た鉱物の粒径は似た値となった.これは熱水変質起源の粘 土鉱物に比べて,風化変質起源の粘土鉱物が多様な環境 変化を受けていることに起因すると考えられる.すなわち,風 化変質起源の鉱物は地表付近で温度変化や風雨,酸素な どの影響を強く受けるため,地下深部の比較的安定した環境 で形成された熱水変質起源の試料に比べて粒径が小さくな る可能性が示唆される.

4. まとめ

バンド比指数と粒径比およびバンド比指数とXRFによって 得られたAl含有率の相関を表したのが第3図である. 粒径 比・Al含有率ともにバンド比指数との相関は小さく,反射スペ クトルはこれらの要素とそれぞれ一意の関係にないことが分か った. この結果から,粒径比とAl含有率は反射スペクトルと全 くの無相関であること,あるいはこれらの要素や今回考慮して いない要素(例えば母岩の違いなど)が相互に作用して反射 スペクトルに影響を与えていることなどが考えられる. バンド比 指数とAl含有率の相関に基づくと,バンド比の大きい斑岩銅 鉱床の試料であるvf3・1やgf19・1はAl含有率が低いことから, Al含有率よりもAlとOHの結合の仕方やAl-OH分子の曲げ, 伸縮運動などに反射率が強く影響されると考えられる.

また、バンド比とAl含有率および結晶粒径比の相関は小さいものの、相関図内で鉱床タイプや変質起源ごとにグループ 化する傾向が確認され、生成過程の違いが鉱物の物理化学 的性質の違いに関係していることが示唆された. 斑岩銅鉱床 のような大規模鉱床の形成に伴って生成されるカオリナイトが 風化変質起源やその他の鉱床起源のカオリナイトと異なる特 徴を示したため、この特徴をリモートセンシングに応用すること で大規模鉱床探査の高精度化に繋がる可能性がある.

文 献

Bibring, J. -P. et al. (2006) Global mineralogical and aqueous mars history derived from OMEGA/Mars Express Data, Science, vol. 312(5772), pp. 400-404.

- Bishop, J. L. et al. (2012) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. *Science*, vol. 321(5890), pp. 830–833.
- 井田隆・虎谷秀穂 (2003) 粉末X線回折による結晶粒径評価,粉 体工学会誌, vol. 40(3), pp. 177–184
- Kalinowski, A. and Oliver, S. (2004) ASTER Mineral Index Processing Manual, Remote Sensing Applications, Geoscience Australia.
- 小池克明・古宇田亮一 (2016). 金属鉱物・地熱資源探査へのリ モートセンシング応用技術とその最近の動向, MMIJ, vol. 132(6), pp. 96–113.
- Murchie, S. L. et al. (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter, *Journal of Geophysical Research: Planets*, vol.114(E2).
- Scherrer, P. (1918). Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1918, pp. 98-100.

第1図 バンド比演算(B4+B6)/B5 による 2.16~2.22μm に おける反射率の比較.

第2図 シェラー式による試料別平均粒径比

