高感度地震観測網(Hi-net)の温度データを用いた 深層学習による紀伊半島南部の熱構造の推定

小平岳大*·石塚師也*·林為人*·小村健太朗**·長井雅史**·松本拓己**

Deep learning-based estimation of thermal structure in the southern Kii peninsula using High Sensitive Seismograph Network Japan (Hi-net) temperature data

Takehiro Kobira^{*}, Kazuya Ishitsuka^{*}, Weiren Lin^{*}, Kentaro Omura^{**}, Masashi Nagai^{**}and Takumi Matsumoto^{**}

*京都大学大学院工学研究科都市社会工学専攻

Department of Urban Management, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8530, Japan. E-mail: kobira.takehiro.63s@st.kyoto-u.ac.jp

**国立研究開発法人防災科学技術研究所

National Research Institute for Earth Science and Disaster Resilience, 3-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan

キーワード:物理法則,深層学習,紀伊半島,熱構造,Hi-net **Key words**: Physics-informed neural network, Kii peninsula, Thermal structure, Hi-net

1. 背景と目的

2050年度のカーボンニュートラル達成にむけて経済産業 省は地熱発電の設備容量を2030年度までに150万kWhに 拡大させる方針を示しており,地熱開発の促進が求められ ている.地熱開発を進める上で地熱系を正確に理解するこ とは資源量の推定等において重要であり,これまで様々な 手法が提案されてきた.しかし数値計算の逆解析は計算コ ストの大きさが問題視されており,近年活用が進む深層学 習による手法(Spichak *et al.*, 2013)はデータ数の制約や 推定値の物理的妥当性などが課題である.一方で近年物理 法則を考慮した深層学習(PINN)(Raissi *et al.*, 2019)が 提案されている.PINNは深層学習を行う際に,現象を支配 する物理法則を制約条件として利用することで推定値が物 理法則に則るように設計された深層学習の手法である.地 熱系のモデリングの分野でも疑似データを用いた先行研究

(Ishitsuka and Lin, 2023) が行われており有効性が示唆 されている. そこで本研究は PINN の実フィールドへの応 用を目指し,紀伊半島南部を対象として 3 次元の温度構造 の推定を行った. 当該地域は非火山地帯ながら高温の源泉 が各地で湧出し地熱資源の存在が期待できる一方で,熱構 造について不明な点も多く解明が求められる.本研究では 周辺地域で得られた 28本の坑井における温度検層データを 学習データとして利用し,支配方程式としては 3 次元定常 熱伝導方程式を仮定した PINN を構築して学習を行った.

2. 解析の内容

2.1 研究に用いたデータ

本研究では、北緯 33.4°から 34.4°の南北約 90 km,東 経 135.0°から 136.3°までの東西約 117 km の範囲を対象 とし,標高・3000 m までの温度構造を推定した.解析の際に は500 m を 1 グリッドとして東西 234 グリッド南北 180 グ リッドに領域を離散化した.また鉛直方向については数値 標高モデルから得た数値を四捨五入することで 10 m 毎の 数値を入手した.また深層学習に用いる学習データとして は防災科学技術研究所(NIED)が設置した高感度地震観測 網(Hi-net)(Okada *et al.*, 2004)の掘削孔 11 本の温度検 層データ,新エネルギー・産業技術総合開発機構(NEDO) の地熱開発促進調査の際の掘削で得られた温度検層データ

(NEDO, 1994) 12 本,および日本原子力開発機構が編纂 した温度検層データ(坂川ほか,2004)5本の合計28本の データを用いた.各学習データの詳細は第1表に示す通り である.また,検層データのうち擾乱の大きい地下0~10m までの値は除外し,深度20mから10mごとの値を学習デ ータとした.また,検層データ深部の地温勾配を用いて標高 -3000mまで線形的に温度の外挿を行い,検層データと合 わせて学習データとして用いた.このときHi-net井は比較 的浅い坑井であるため,温度勾配は周辺の温度勾配データ と比較検討し,安定と看做せるもののみ利用した.

2.2 本研究で用いた PINN の構造

深層学習を行う際は 3 次元座標を入力として与えて温度 を出力する,隠れ層が4層,各層でノードを25 個持つ全結 合の順伝播型のニューラルネットワークを用いた.また活 性化関数として tanh 関数を採用した.損失関数では推定温 度と訓練データの二乗平均誤差の他に物理法則として 3 次 元定常状態の熱伝導方程式と境界条件を考慮した.境界条 件として上部境界は深度 20 m 地点の検層温度の平均値で ある 17.4℃で一定とし,下部境界については訓練データの 温度勾配を用いてクリギングによる内挿を行うことで温度 勾配分布を作成した.なお側部境界については境界条件を 設定しなかった.学習の際はまず 30,000 エポック分の学習 を推定値と訓練データとの誤差のみの損失関数で行い,そ の後,損失関数に熱伝導方程式の項と境界条件の項を加え 60,000 エポック分の学習を行った.

第1表 学習に用いた坑井.いずれの坑井も鉛直に掘削されている. 温度勾配は安定した深部のデータから最小二乗法を用いて算出した値である.この温度勾配を用いて温度の外挿を行った.

坑井名	温度勾配(℃/m)	掘削長(m)
和歌山	0.032	203
野上	0.025	103
上富田	0.039	103
那賀	0.016	115
印南	0.026	103
花園	0.042	103
広川	0.037	104
大塔	0.009	103
那智勝浦	0.024	103
紀宝	0.023	103
黒滝	0.037	104
N4-HG-T1	0.026	1000
N4-HG-T2	0.039	1000
HG-T-1	0.023	400
HG-T-2	0.077	400
HG-T-3	0.071	400
HG-T-4	0.054	200
HG-T-5	0.032	200
HG-T-6	0.043	200
HG-T-7	0.053	200
HG-T-8	0.027	200
HG-T-9	0.028	200
HG-T-10	0.006	200
50-K-1	0.020	500
美山温泉 土油温白	0.037	1350
甲澤温泉	0.018	350
串本温泉	0.024	1300
下北山温泉	0.014	1300

3. 結果·考察

第1図は推定結果の一例である.まずモデルの検証のた め訓練データと検証データの分割法を変えて比較を行った. (a)と(b)を比較すると,(a)においては比較的滑らかに 温度が分布している一方で(b)では特に坑井から比較的離 れた範囲において 0℃を下回る温度が推定される点や低温 域と高温域が非連続的に変化している.このような傾向が 見られた原因として,(b)は同一深度において訓練データが より少なくなることで,学習による推定値の改善が行われ なかったことが考えられる.

次に(a)の推定結果を,上原ら(2005)が重力異常と深 部比抵抗構造をもとに提案した地質構造モデルと比較した. モデルでは紀伊半島中央部に南北に伸びる大峯酸性岩類の 地下深部にスラブ由来の流体が存在し,この流体が上昇す ることで高温の源泉の起源となると考えられている.また, モデルは北側で流体がより浅部まで上昇する構造をしてい る.一方で(a)の南北方向の鉛直断面(c)における温度分 布を見ると北側で高温域が浅部に及ぶことから,モデルの 地質構造に整合する推定が行えていることが示唆される.

さらに、産業技術総合研究所の地殻熱流量データベース (田中ほか,2004)に収録されている地温勾配データ31点 と推定により得られた温度勾配を比較すると、18点におい て差が0.001℃/m以下になった.一方で推定値と勾配の差 が0.001℃/mより大きくなった点のうち6点が本宮付近、 2点が白浜温泉付近であった.これらの地域では温度勾配を より小さく推定されていたことから、本モデルでは広域的 な温度構造は捉えられているが、全体の傾向に影響され温 泉地などの局所的な高温域については十分には反映できて いない可能性がある.今後、底部境界で考慮した熱流束の更 なる精緻化や地質条件を考慮した学習を行うことでさらな る精度の向上が期待される.

第1図 推定結果の例.(a)は坑井の位置ごとにデータを分割した場合,(b)はランダムにデータを分割した場合である.また
(a),(b)は標高・2500m地点の水平断面における温度分布,
(c)は(a)中の黒点線の鉛直断面における温度分布である.

文 献

- Spichak, V. V., Zakharova, O. K., Goidina, A. G. (2013) A new conceptual model of the Icelandic crust in the Hengill geothermal area based on the indirect electromagnetic geothermometry. Journal of Volcanology and Geothermal Research, vol.257, pp.99-112.
- Raissi, M., Perdikaris, P., Karniadakis, G. E. (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, vol.378, pp.686-707.
- Ishitsuka, K., Lin, W. (2023) *Physics-informed neural* network for inverse modeling of natural-state geothermal systems. Applied Energy, vol.337, 120855.
- Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., Yamamoto, A. (2004) *Recent progress* of seismic observation networks in Japan -Hi-net, Fnet, K-net and KiK-net-. Earth, Planets and Space, vol.56, no.8, pp.15-28.
- 新エネルギー・産業技術総合開発機構 (1994) 地熱開発促 進調査報告書 No. 37 本宮. 新エネルギー・産業技術総 合開発機構, pp.885.
- 坂川幸洋,梅田浩司,鈴木元孝,梶原竜哉,内田洋平 (2004) 日本の坑井温度プロファイルデータベース. 地震, vol.57, no.1, pp.63-67.
- 上原大二郎,角田地文,工藤健,梅田浩司,小川康雄,棚 瀬充史,武田祐啓,千葉昭彦,菊池晃,鍵山恒臣 (2005) 紀伊半島南部地域の重力異常と深部比抵抗構造から推 定される地熱構造.地震,vol.57,pp.245-255.
- 田中明子,山野誠,矢野雄策,笹田政克 (2004) 日本列島 及びその周辺域の地温勾配及び地殻熱流量データベー ス.数値地質図 DGM P-5,産業技術総合研究所地質総 合センター.