海底熱水鉱床と黒鉱鉱床の構造的・化学組成的類似性

小池 克明*・江夏 道晴*

Structural and Geochemical Compositional Similarities between Seafloor Hydrothermal Deposit and Kuroko Deposit

Katsuaki Koike* and Michiharu Enatsu*

*京都大学大学院工学研究科都市社会工学専攻 Department of Urban Management, Graduate School of Engineering, Kyoto University, Katsura C1-2, Kyoto 615-8540, Japan. E-mail: koike.katsuaki.5x@kyoto-u.ac.jp

キーワード:金属濃度,鉱体,地球統計学,地球統計学,主成分分析 Key words: Metal concentration, Ore body, Geostatistics, Principal component analysis

1.はじめに

これまでの多くの調査により,伊豆-小笠原海域と沖 縄トラフ地域に海底熱水噴出域が数多く分布し,そのう ちベースメタルなどを含む硫化鉱物が濃集した鉱床の存 在も確認されている.この海底熱水鉱床は新第三紀中新 世に生成され,秋田県北鹿地域などに多く分布する黒鉱 鉱床と同じタイプで,現在生成されつつある黒鉱鉱床で あるとも考えられている(山田,2018).しかしながら, 陸域と海域にあるこれらの鉱床の関連性は詳細には明ら かにされていない.そこで本研究では,黒鉱鉱床と海底 熱水鉱床の鉱体の構造,および元素濃度分布に基づく化 学組成の観点から鉱床の類似性について明らかにした.

2.分析データと空間モデリング法

黒鉱鉱床の鉱石として京都大学総合博物館と秋田大学 鉱業博物館での収蔵試料を用い、安部城、水沢、椿、花 岡,釈迦内,古遠部,小坂,内の岱,吉乃,加納,大森, 石見の 13 鉱山を対象とした.各試料のうち硬質で硫化鉱 物の存在が目視で確認できる部分をカッターで切り出し, それを粉末にして XRF と ICP-MS で元素濃度を測定し た.海底熱水鉱床としては沖縄トラフ中部に位置し,カ ルデラ構造内で熱水噴出が点在する伊是名海穴域を選ん だ.2016年のCK16-05 航海(D/V Chikyu Expedition 909) にてほぼ東西方向に実施された6本のボーリングのコア から Takaya et al. (2018) と Nozaki et al. (2021)の ICP-QMS 分析によって得られた元素濃度データを解析に用 いた.これらのうち黒鉱鉱石の一般的な定義に従って, 代表的なベースメタル Cu, Zn, Pb の濃度がそれぞれ 1 wt%,5wt%,5wt%以上となるサンプルデータ(黒鉱鉱 床が 29個 ,海底熱水鉱床が 90個)のみを解析に用いた.

また,黒鉱鉱床の3次元モデリングには,規模の大き い松峰鉱山で実施された77本のボーリングによる1502 コアでの濃度分析データを用いた.空間モデリング精度 を向上させるために,地質とスケール則を考慮した地球 統計学的手法である KGC (Kriging with Geological Constraint: Koike et al., 2022)を適用した.一方,海底熱 水鉱床では松峰鉱山と異なり,対象領域の大きさに比べ てボーリング本数が格段に少なく,そのサンプルデータ の分布が偏っている.このような場合には回転バンド法 シミュレーション(turning bands simulation: TBS)が有 効であることを de Sá et al. (2021)は明らかにしている.

さらに,各元素の濃度は大きく異なるので,まず各元 素濃度データを全元素濃度データの幾何平均で基準化す るという有心対数比変換(以下 Clr)を行った.次に,変 換後の濃度データを各元素で平均0,分散1になるよう に標準化し,最も代表的な次元削減法である主成分分析 (PCA)を用いて化学組成の特徴を抽出した.

3.解析結果と考察

3.1 鉱体の構造の比較

Koike et al. (2022)による KGC を用いた 3 次元金属濃度 分布を,長方形の計算領域の長軸に沿った垂直断面図で 第1図(a)に示す.図は Cu 濃度であるが Zn と Pb 濃度分 布もこれと同様の傾向であった.これから高濃度部が領 域下部から垂直方向に点在し,浅部で水平方向に広がる という特徴が明瞭である.KGC による地質分布モデルに よると高濃度部は黒鉱と黄鉱の分布に対応する.よって, このような連続性を有する高濃度部は熱水のパスを表す と考えられ,高濃度分布から熱水パスをトレースできる.

次に,海底熱水鉱床での TBS による Cu 濃度分布を第 1 図(b)で比較する.ボーリング I が位置する硫化物マウ ンドが高濃度部に相当するとともに,その下位に海底面 から深度 30~50 m (mbsf)の範囲で水平方向に連続する 高濃度部も顕著である.前者はストックワーク状の上部 鉱体,後者は熱水の側方流動による下部鉱体の可能性が 高い.この構造と黒鉱鉱床を対比すれば水平方向の高濃 度部は下部鉱体に相当し,垂直方向の高濃度部は熱水パ ス中の小規模塊状鉱体とみなせる.すなわち,黒鉱鉱床 では海底熱水鉱床で形成された上部鉱体が陸化過程で侵 食か破砕され,稼行対象になったのは下部鉱体であると 解釈できる.

第1図 (a)KGCによる松峰鉱山と(b)TBSによる伊是名海穴域での Cu濃度分布の垂直断面図.

第2図 黒鉱鉱床と海底熱水鉱床での元素濃度データのPCAによる 累積寄与率およびPC1・PC2の負荷量分布.

3.2 化学組成の特徴の比較

PCA では検出割合が 6 割以上で,元素間で相対的に強 い正あるいは負の相関をもつペアがあるという条件で Al, Fe, Cu, Zn, Pb, Cd, Ga, Ba, Sr, Y, Ag, Sn, お よびレアアース元素濃度の総和 REE の 13 元素データ を用いた.相関係数 r の絶対値 0.6 以上を相関性存在の 基準とした.黒鉱鉱床と海底熱水鉱床に共通して r が 0.8 以上の強い正の相関が存在するペアは Zn - Cd, Ba - Sr, Y - REE であり,特に Zn - Cd の r は 0.98 と大きい. 黒鉱鉱床で重晶石は主要鉱物の一つであるが,Ba はその 構成元素である.いずれの鉱床にも生成時の海水混入の 影響が後者 2 つのペアに表れている.13 元素の各濃度デ ータのボックスプロットを比較したところ,Sr 以外は 2 つの鉱床での濃度中央値に大差はなかった.

次に, PCA による累積寄与率と主成分(PC)負荷量の

グラフを第2図に示す.いずれの鉱床もPC1の寄与率が 45%程度,PC1とPC2を合わせた累積寄与率が70%程度 になり,それ以外のPCの寄与率が小さいので,PC1と PC2のみを考察の対象にする.黒鉱鉱床と海底熱水鉱床 のPC1では負荷量の符号が逆の元素が多い.元素に基づ きPC1の特徴を解釈すると,黒鉱鉱床では硫化鉱物の卓 越を示し,黄鉄鉱や黄銅鉱の顕著さと閃亜鉛鉱,方鉛鉱, 重晶石とは逆の関係にあることが示唆されるのに対して, 海底熱水鉱床ではこれらの硫化鉱物が正の関係を有し, 閃亜鉛鉱と方鉛鉱が最も卓越するがそれに伴って黄鉄鉱 と黄銅鉱も生成される.PC2 に関しては黒鉱鉱床では重 晶石の生成が顕著なほど硫化鉱物の生成が少ないのに対 して,海底熱水鉱床では黒鉱鉱床でのPC1の特徴と類似 している.ただし,閃亜鉛鉱と方鉛鉱の寄与は小さく, 黄鉄鉱と黄銅鉱の生成に特徴付けられる.

以上の特徴の生成要因として,2 つの鉱床での鉱体の 対応が考えられる.すなわち,海底熱水鉱床のPC1は主 に上部鉱体,PC2は下部鉱体の化学組成の特徴を示し, 黒鉱鉱床は上記のように下部鉱体に対応するとみなせる ので,PC1に海底熱水鉱床のPC2の特徴が現れるという 解釈である.そこで,海底熱水鉱床での30 mbsf 以深の データに限定して PCA を適用した結果,黒鉱鉱床での PC1の負荷量(特にZn,Pb,Cd)に類似したパターンが 得られた(第3図).ここに本解釈の妥当性が示される.

第3図 海底熱水鉱床の深部データのみによるPC1の負荷量分布.

4.まとめ

松峰鉱山と伊是名海穴域を対象として,鉱体の構造と化 学組成の観点から黒鉱鉱床と海底熱水鉱床の類似性につ いて検討した.その結果,黒鉱鉱床で水平方向に連続する 主要鉱体は海底熱水鉱床の下部鉱体に相当し,Fe・Cu・Zn・ Pb・Ba・ REE など 13 元素に対する主成分負荷量の分布 にもその可能性が表されていることを明らかにできた.

謝辞:松峰鉱山のボーリング調査資料をご提供,資料整理に ご協力いただいた DOWA メタルマイン(株)とエコシステム花 岡(株)に深甚の謝意を表したい.

文 献

- de Sá, V. R., Koike, K., Goto, T.-N. et al. (2021) A combination of geostatistical methods and principal component analysis for detection of mineralized zones in seafloor hydrothermal systems. *Natural Resources Research*, vol. 30, pp. 2875-2887.
- Koike, K., Kiriyama, T., Lu, L. et al. (2022) Incorporation of geological constraints and semivariogram scaling law into geostatistical modeling of metal contents in hydrothermal deposits for improved accuracy. *Journal of Geochemical Exploration*, vol. 233, 106901.
- Nozaki, T., Nagase, T., Takaya, Y. et al. (2021) Subseafloor sulphide deposit formed by pumice replacement mineralisation. *Scientific Reports*, vol. 11, 8809.
- Takaya, Y., Yasukawa, K., Kawasaki, T. et al. (2018) The tremendous potential of deep-sea mud as a source of rare-earth elements. *Scientific Reports*, vol. 8, 5763.
- 山田亮一 (2018) 黒鉱鉱床の概要. 資源地質, vol. 68, pp. 79-102.