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1. Introduction
Sparsity and shortage of information is inherent to

most geostatistical projects. This pitfall makes modelers 

puzzle over approaches to mitigate the setbacks and 

optimize the available information. The combination of 

data-characterization and geostatistical methods can be 

a plausible way to minimize the problem. 

This study aims to apply a combination of methods, 

such as principal component analysis (PCA), and spatial 

modeling techniques using conditional geostatistical 

simulations, turning bands (TBSIM) and pluri-Gaussian 

(PGSIM), to a real geochemical data set and lithologic 

log data. The goal is to construct plausible 3D models of 

geochemical compositions and lithotypes in the study 

area in order to identify the zones with more occurrence 

of mineralization and propose a geological interpretation 

of fluid circulation in the study area. 

The next sections introduce the study area and set out 

the methodology and its perks to the current scenario. 

Besides, the results are presented and discussed. 

Although the methodology is applied to a specific 

environment of this study, such combination can be 

widely used for a myriad of geological contexts. 

2. Model Domain and Dataset
Following our preceding study (de Sá et al., 2020), a

200m700m250m domain, located around 1500m below 

the sea level (mbsl) was selected (Fig. 1). Previous 

geochemical studies have indicated that this area is rich 

in Ba-Zn-Pb. The proposed methodology uses a 

multi-variate geochemical set (52 elements) and visual 

core description information alongside X-ray diffraction 

(lithotypes) as input data for TBSIM and PGSIM 

implementations, respectively. These data were sampled 

from six boreholes (black dots) spread along the E-W 

direction, with variable lengths from 46m (borehole I) to 

180m (borehole III). The lithotypes classification is 

broadly based on whether polymetallic sulfide minerals 

and hydrothermal alteration are present. 

Borehole I was drilled in a mound and is regarded as a 

discharge zone of the hydrothermal system. Borehole VI 

presented little evidence of sulfide and altered material 

in its sample core descriptions and geochemical analysis, 

being more likely a recharge zone. In addition, a seismic 

survey of the area identified the development of a fault 

between boreholes V and VI (dashed line). 

Figure 1: Dimension of study area and its spatial distribution of 

boreholes. The black line shows the location of cross-section 

for geostatistical results in Figure 2. The dashed line shows 

the location of fault identified by a geophysical survey. 

3. Methods
The proposed methodology integrates geochemical

measurements and lithotypes. Firstly, the entire 

multivariate geochemical data is centered log-ratio (clr) 

transformed and eight moderate-highly correlated 

elements are selected, such as Zn, Pb, Cu, Ag, Ba, Cd, Sn 

and Mn. These elements are not only statistically 

correlated but also are the most representative ones in 

mineralized zones in hydrothermal systems (Pirajno, 

2009). Next, this subset is used as input to apply PCA, 

which main products are principal component values (PC 

values). TBSIM uses this variable to spatially locate 

highly mineralized zones and set iso-surfaces to separate 

the sulfide-rich zones from impoverished materials. 

Finally, PGSIM is individually run in each zone. The 

following subsections briefly describe the main 

characteristics under PCA, TBSIM and PGSIM. 

3.1. Principal component analysis (PCA) 

PCA is a powerful tool to examine the interactions 

between the various variables and find the most efficient 

linear combination of them.  Its efficiency stems from 

its capability of the first two or three principal 

components, PCs, to gather the greatest amount of total 

variance. PCA method reduces the dimensionality of 

data with many measured variables by transforming 

these to a new, considerably smaller set of variables, 

PCs. 

3.2. Turn bands simulation (TBSIM) 

The principle of TBSIM is to produce a non-conditional 
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simulation at first. That is, yielding a map that reflects 

the variogram, but the data is not honored. Afterwards, 

in order to correct it, a map is obtained by interpolating 

the experimental error between the measured data and 

non-conditional simulated value at each data point 

(Chilès and Delfiner, 1999). 

3.3. Pluri-Gaussian simulation (PGSIM) 

This methodology aims to simulate categorical 

variables by combining multiple multi-Gaussian 

variables using multiple thresholds. The gist of PGSIM 

is to yield two continuous Gaussian fields using standard 

multi-Gaussian techniques. Therefore, these fields are 

truncated to produce categories, which the thresholding 

relies on the value of both Gaussian fields (Mariethoz 

and Caers, 2015). 

4. Results and Discussion
Three cross-sections along E-W were selected to depict

a conceptual model for an expected lithotypes 

distribution (Fig. 2a). 

By applying PCA considering the eight geochemical 

elements, the eigenvalues and total variance of eight 

PC’s are computes. PC1 retains most of the information 

of the input data and accounts for 73% of total variance 

whereas PC2’s variance is 12.3% and the sum of the 

variances from PC3 to PC8 is as small as 14.7%. 

Therefore, only PC1 was selected for TBSIM to locate 

high-metal-content zones and interpret the 

sulfide/sulfate mineralization process. 

The TBSIM result is shown as an E-W vertical 

cross-section (Fig. 2b) with iso-planes of the PC1 values 

which reveal that PC values greater than PC1 = 4 are 

thickly distributed underneath the sulfide mound, 

suggesting stockwork formation, and a horizontal and 

stratiform mineralization seems to occur from the 

mound toward the east until the inferred fault. 

Considering the stratiform mineralization and effects of 

hydrothermal activity from the western boundary to the 

inferred fault, this subarea was divided into three zones 

following the iso-plane of PC1 = 4 for PGSIM. The top 

zone is mainly unrelated to hydrothermal alteration and 

composed of primary and reworked sediments. The 

middle zone is a major mineralization zone containing 

the massive sulfide mound, stockwork, and horizontal 

and stratiform subseafloor sulfide layer. The bottom zone 

mainly consists of pervasively altered rock. 

These results resize the model domain to optimize the 

PGSIM application. The easternmost limit was 

rearranged to suit the distal edge of the polymetallic 

sulfide body, shortening the E-W length from 700 to 500 

m, while the vertical range remained unaltered. 

The results of the PGSIM in each zone defined by 

TBSIM are shown in the resized domain (Fig. 2c). 

According to this model, the distribution of sulfide rock 

suggests two fluid flows with high probability (red 

arrows). The ascent flows toward the sulfide mound and 

the lateral flows from the stockwork zone toward its 

adjacent permeable layers. The former flow may be 

predominant because mineralization is concentrated on 

the seafloor and in the shallow subseafloor. The latter 

flow induces large heat loss without forming a chimney 

or mound and causes horizontal and stratiform 

alteration and mineralization. 

5. Conclusion
The combination of PCA and two geostatistical

simulations, TBSIM and PGSIM are very efficient to 

clarify geologic structure and 3D distribution of metal 

contents in the model domain. They can contribute to (i) 

construction of proper geologic and mineralization 

models and (ii) identification of hydrothermal fluid-flow 

systems and the accumulation mechanism of base metals 

in seafloor hydrothermal fields. 
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Figure 2: Cross-sections along E-W showing (a) a conceptual 

model of study area, (b) E-W vertical cross-section along the line 

in Figure 1, and (c) spatial modeling results of lithotype by 

PGSIM. The arrows in (c) show the interpreted hydrothermal 

fluid flows. 
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