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JAMSTEC bathymetry data contribution to Seabed2030 project
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1. [FC®HIC

ESZAFFEBR S N MEPERFJERA J6bEAE (LLT, JAMSTEC)
T, 2019 4F 10 A & 0 53 BF@h &R o> “KERpE I FLE”
WIe7 a7 7 ABEH Eidof 0K, 2020). Z0HI2iE
EOMEME T — % B4 L, HROWEMIET —% D —
Joft [Seabed2030] r Y =7 F~ET 2HEHENEGEN
TWa., AT, vy roi#E, JAMSTEC OFT
B35 —4~_—2% 4~ [DARWIN (Data and Sample
Research System for Whole Cruise Information in
Jamstec) | DHE &L Z DT — F ~_— 2 5 AL AT RE 72 Y IS
HIET — X IZOWT TR T 5.

2. Seabed2030 [Z3)(+T

Seabed2030 1 ¥ = 7 k&I h. ik, GEBCO
(General Bathymetric Chart of the Oceans: KiE/KIEHX])
DEFRAKBEHEEE & EREGOLFR T v Y= 7 FOLEER F
2RO BNTRETHD. GEBCO i3, &R oiEEX
DIERR & MIEHTE A FROIEE AT > T D, TOEEHRE
AR LY 2030 £ TICEMADIEELZ 100m OfFG &
TUREHTZ KA ERT 5, &) #EN [Seabed2030) T
»H5H. =a2—Y—7 2 KD NIWA (National Institute of
Water and Atmospheric Research Ltd, New Zealand) 7%
A A DM A & Lo R O Y £ L O TH Y, &
TIZ 200m 7'V v K> GEBCO2020 OfERLE T T
5. 546 HIZ NIWA £/ T The Nippon Foundation -
GEBCO Seabed2030 Project- South West Pacific Regional
Mapping Conference] 234> 71 VBifEESNT=. BAND
X, W ERLTHREE R, JAMSTEC 2602036 -
7o, BEER T H 2 RO T A IERRILOME N e X
7z, NIWA 3 U, Geoscience Australia, NOAA/THO,
Seabed2030 B # 72 L, 25 41 L3 2N L 7-. Seabed2030
I TOE, F—F AR RU AL MTONTOH
W BH TN, HYERITELET —F BNy UD ik
(R“C%Z) 9 LIoHga D 57, Bk - gl o
A ZBG, AN—RAET VI FEREENND, WO T
—2% JAMSTEC NTIIR SN TNS ORFF, 2020) .
TR BEEEND DG, NTRhBEOT — X b ijEE
DOECERE G L, BEFEOHEIT — 25, K0 #EH72 i

EHIER A BT 2, &\Wo =T —< 1T A T
% (B %1% Hidaka et al., 2020; 4%, 2018) .

3. BRAIDBEMET—4
3.1 DARWIN 5 —&Z~_X—X¥% A b
JAMSTEC TiE, DARWIN & W) it 7 — & _X— 2z &
T — 2 2B LTS (8 1 X). 7 Eoffao
ﬁﬁﬁn/@@%ﬁﬂﬁ&f%é% 5 —4, WK, B, H
R L W i T — &, BT — %, AU
VINT =R ERBER ST, RERCHEATE D MR
W T — 2B, ZJ—RALBE— K, XEHIXO S, H
1%7 ZEHSTHENTREY, BGFHOT —Z BRI
RETHD E1X).

~ DARWIN
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- Dive tracks
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%2 T, Ao bIR, e OREE S H S, £
Rk, Bix 2 EIR 2R T, e, BT —F 04
HRFALATR SN ETO—@#HOT e 252 R LTI-HD
THD. MOWHT—H¥OXET L, ERAMOIENRT &
WCEEERTRREIRoTND, IO, il
70— )V OIFARC IR AT T OfTEER, HEIEE o
T A WG, —RAER, 7 —5 D QAQC, HIER, F—x
—ASOREE, —EMMERTT X ARET, 2F0155
FELWSTZEARDPDPSTND Z EERT. 7R
T =X LTS, B, M LR R R
D2 ENREBHITLERTWS.

3.2 Wi~y 7RR

Seabed2030 71 ¥ =7 F~EHEKT H720I2iE, LD D
WOHREHGT — 2 3 EOUHKICH D 0FERL, BREIC
X OHHEERKETH S, KED NOAATHO (National
Oceanic and Atmospheric Administration, International
Hydrographic Organization) 7 —# %1 hTiL, RO
B O~ v 7ER RN EL O LN TND. aThky =
DY A FZDARWIN TOFRRHHE LIZWY, &0 9 (KIHAS
BT, BHWO~ v FRRKNENRER D720, AN
T&ERhoT-. 3 KiZkd NOAA/THO @ DCDB (Data
Center for Digital Bathymetry) ¥4 F THWHIL TV
~ v 7K1, EPSG:3857 (Spherical Mercator Projection)
ThdHrDITxL, % 4 X DARWIN # -1 kTI,
EPSG:4326 (Equidistant Cylindrical Projection) T 5.

o 7 T S
Data Centre for Digital BQ%MViewer
SR

-

%3 NOAA/IHODCDB M~ v FFiR. fkfaDii,
H AL O B A LIS O ENC K 2 i R % 74
DARWIN s e mssrec s

ComectUs  Appiicetion  User Regietrasion

41 DARWIN O~ v 735, HEAOGIT, WK HTY
BRI 2% L, AR B A R AR

EROX S e~y TERIRHIEDE NP LR R RN TE
Mo dz. AlE, NOAATHO ol T, EPSG: 4326 %
EPSG:3857 (& #d 5= — &ML, %5 XITRT LD

TR EFRMARE L fe o7, P DLEMO LA ¥ ——HEIC
[Japan] OHEENMDY, #RI 25 E, DARWIN (ZILEk
ENTOWAHIBIRK A A L o PRICTEREND LD ITh-o
7o EFTORNATREIZ/R Y, 5% OT — XN LY A A—
A7 Z ERHIRF SN D, AF#EE TIEL, DARWIN %+
MO LT — & 6 B AJE I O a0 Wi oA H
BZRBNT 5.

4. SHEDFRE

DARWIN 1 hZiE, 2008 4EDiEMBRLALISE, 1000 fit
W B 2 DR BE I N TV D, 5% b
EHIZEEIM L T 2 ERTFREIND. TDd, S5
LOTI7EAIX LT, Xy =70V — =AM D
D BIRNE D) FBARPELS, EHLENTX 5 &) ekE
NEEND. BUKRICI - C, ZEMAHEE RN TR SN,
R RE D FIC oW T LS B OMEE > TN 5.

» 350 OCOBNOA NCE! (1)

e - B

% 5 X NOAA/IHO DCDB ¥4 b+ OAJAOEBIF RO HIC
[Japan] ® LA ¥ —23140 0, DARWIN ¥ —Z DA FER &N

TW5. T L PEDRIE, DARVIN [ZBFEENTWAT—4,

FREORIE, BARLSOENC & % EHIEABIN 2=

5. BiEF

DARWIN # k& NOAA/THO OF—# %A D&
HMEIZH T > TE, RFREORESHFa—T T —I R
OILREK, HEEHEITRETIZEATOERMEIERIZT RNA
A&, ALRRICE, e/ T Aa— RERIZHE
HERIZ e o7z, ZOHEBHEY UTHEHH L LTz,

X k- YA MER

AFdH0 (2020) JAMSTEC O#AIZE 7 11 75 24P
JEHIE EE). fH#HHE, vol.31, no.1, pp.13-15.

ZNr (2018) HIERELE 7 1 & X fiREA D 7= 6b D F — X B}
BURHT- VB 0 B0 12881 IS G-, TESRHE, vol.29,
1n0.2, pp.49-60. https://doi.org/10.6010/geoinformatics.29.2_49/,
(Fez8 B 2020 42 10 4 9 A)

HELERT 2R S8 1% (2016) JAMSTEC il « 1T — & - 3
v 7 B % ¥ A 75 A (DARWIN).
http://www.godac.jamstec.go.jp/Darwin/ (iZ8 H 2020 4
1049 A)

Hidaka, M., Matsuoka, D., Kuwatani, T., Kido, Y., Kaneko,
J., Kasaya, T. and Kikawa, E. (2020) Super-resolution
for seafloor topography using deep convolutional neural
networks. JpGU-AGU Joint Meeting, 12-16 July.

NOAA/THO DCDB: https://www.ngdc.noaa.gov/iho/ (2
A 20204 10 4 9 A)

SR R Y A
http://www.jamstec.go.jp/msg/j/ (FEz8 H 2020 45 10 A 9 H)



31 3-4 2020

FEOOFICKHMERMBENDEIL

AN =

The change of detection ability for earthquakes
by the new coronavirus

Yuzo Ishikawa

ENZATIEBRSEIEN  FEEBAMRRANIZERT S <IEHH 1-1-1

F—0—F . HEMEmES, Fla e

E-mail:catfish@wa2.so-net.ne.jp

Key words : detection ability of earthquake, new coronavirus

1. [FL®HIZ

AW ANWAZRIEENC k> THRICE® 2 5.2 TRV
BB ED D E L., TDOL O ) A XERET D28,
PRECE W, TIBNFAET D & 2 A0 BEE - ST
A RELTE, HHETO A4 XRBETITSWNWE TS
T, EHFE#E THIFRES B —2RETHRED
BHaELTE., LrL, ENTHHEORERE N AR
DHEFEINC L > TELT D Z EiFdEH STV B/
1E2, 2008). ARENFH 2 v ORETEIZL > Tide
v XTI, EFEFEEESVESINGZY &
SRR K E 2R Z 2 72, & OB IR Hhlh
A XPKT L LS Tunb (Lecocq et.al,2020).
ZIZCHEHEBRD v S ORE R TR-

20201/1 00 — 2020 7/31 240

10 15
FILE:ita202001-07 zeiz

BIN. A XV T OERSG. S4FE1H1E”ST7TH31I BET.

2. HERE O
FINE(2008) T, AR, HE, HE, A1 0H
B u 7 EZRRALT, MMANALL, EEHL e Y%
THZETRL, FNHONRE = RNENE ORI DS
EE BB L TWD Z AR L. FORE, Ui
HEIE EHSIEENC LA EEZTOT W L AR LT,
AR, 4% Y) 7ESHERDE - KIUBFEFT (Istituto
Nazionale di Geofisica e Vulcanologia) ODHiEH # 0 7 %
FIALE., B1IXKCAE1IHLIAND TASIHET, <
J=Fa2—FK0.0M15 05 FET, S 30km LLEDOERD
HiER L. A &) THROBRREZY D LT (68
1 MOEFEAOFR D) RBAEOREMZEIEZE 2 KIZR L
2. A Z V7 TIE, 2Fn v
JET N3 H 12 HBAT
b, 5H 4 05 EREAfR
franiz. F2XOLEMOF
" Gt 3 H 12 B 0 &R
2. LTW5s., BEMERIZO
- FROD LB S ZHETO
DEFTH i%iﬁ@{%uj:@/\ﬂ_xvciﬁ
15km 25 LI 7oTVD.
30km % 2 KOART ARERIL,
540 0KERLTND.
EREOAHEDORN—Z XD
¥ THEE, TO®RITEMD
R=APNDLLELTND. =
FHELTIIWDAIRr vy 7 Xy
CIMTONBLRION— R X
DNV, ZDZEND
5H 4 BLRBRice vy 7 oy
ITRAICRBR SN TIEN D b
DD, HEEEBEEO L~

E” X, T s B LI OWREE
100 IZIE D E o TR & HER]
e gt BIHECHE S 2 EEK 0L
2 EMHEZ5.
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2. 1 KMOMOTOERROBEBROMMEK. 1] 1 B>

57 HET. fitfhoo BV 1% 100 4.

T XD a0, AARO—ILEE T L ET
RoND. KT ALRE T — % CTHREHEEL O 2020
49D 6 H9H 2480045 FE T OEEFFET SN
HEN7ZHE), M1OU T, M~ A F % 2.0 I, % & 60km
DIEORRIX 8 7M. 2019 £ R UHH, [F USMHOER
x5 7ME. 2018 D[R UHiR, A U&H0=RERIL7 4
BTholz. LizhoT, FEFHEESHH I N TV
M, 2018 4F, 2019 D[R UHIF THAS L0002 T
W EEZADMBEN. ZhE, BATIZe v 7 X
VDX D TR B R o FASIEEORIR 21T, B#
NI RRFHNHIBR TIT o 72 B b A Ze .

L2 L, EFFEESOMIL, BERotBion /) £ XL
SR VIR T LTV, #3, ARICHEOKEI THE
BLUHS OHE)Z 13 B 00 4y 00 B 1 KRl 2 R LT\ 5
(BUEB SEBHEF DO AR — L_R—U NG L), # 3 K
IERERESAHENDRIDO 3 H 9 BT, 4 XITIEF
FREREESNHINTWS 4 A 13 HTHD. WiEoHiE) /
L ADET—BARTHS.

X

AINE =« LZREREZE - PAE Z (2008) IR # a 7 A
2 DFETEE O R, HERK 2R FHE TS EA K
£, S143-012.

Lecocq et.al (2020), Global quieting of high-frequency
seismic noise due to COVID-19 pandemic lockdown
measures, Science 11 Sep., Vol. 369, Issue 6509,
pp. 1338-1343.D0I: 10.1126/science. abd2438
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Understanding and utilizing the spatial distribution of MT response
functions based on geostatistics

Nagi Yamashita*, Tadanori Goto(Univ of Hyogo), Satoru Yamaguchi (OCU)

Abstract: In the MT method, the underground resistivity structure has been estimated from the
characteristics of the MT response function that changes with frequency. Furthermore, in order to reduce the
influence of resistivity anomalies near the surface of the earth, analysis using the rotational invariant (Zssq) of
impedance is progressing. However, the spatial distribution characteristics of Zssq have not been discussed. In
this study, the spatial resistivity and phase spatial distribution of Zssq obtained by numerical calculation using a
two-dimensional resistivity model were obtained and the characteristics were quantified. Here, we investigated
the spatial correlation of MT response functions using a geostatistic variant. Comparing the range of the
variogram and the spatial wavelength in advance, there is a tendency that the range is about 1.5 to 4.5 times the
spatial wavelength, and the spatial wavelength can be calculated from the variogram of the MT response
function. As a result, a gentle positive correlation was found between the apparent resistivity and the spatial
wavelength of the phase. Focusing on the similarity of the spatial distributions of both, we verified whether
static shift can be discussed.

* S IR N KSR AE M PSR SE R U ER B 2388 Earth Science Laboratory, Graduate School of life Science,
University of Hyogo 2167 Syosya, Himeji, Hyogo 671-2280, Japan.

Hok SR T N R ER AT SE R i AR 1S 22828 Department of Geosciences, Graduate School of Science,
Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-5858, Japan.

F—U—R:MT %, WP, EBEEARER, UrU47 T4

Key words : MT method, Resistivity, Rotation invariant, Variogram

1. [FC®IC

MT ¥ECIEL JEIEEUC - TR T 2 RN T FEREToN,
FOMT SRS, MT L AR R) OFFEIZ ST, H#h
T OIRGURE OWEE 21T > TE 7z, FRCTETIE, H
RIHED/NA T —NREEIZ L DB (RAET 47 -
TAAM=vay) BRETLEDIC, A E—F R
DR R (Zssq) (THSUN=H T HHEHTHEE O AT
BEDLNOOH D,

ULNUZRMR G, Zssq DZEMG3A DREME, FRIZKFEH )
DRAFFHEC DN T, i S TR0,

Z Z TR TIE, 2 IRIT7Z IR E & ROE L
BAEFHE L > THEOLNINT VAR R (Zssq) DZEfH
oA R, T DO OREOERIL 1T o T,
ZZCIRHERERFN TR0 Y bO Ty VAT T LB
WT, MT VAR ZAOZEREBEMEEZRE LTz, £V 7
VAT T LETADNDLELND L Y] LMD
WRAE T L, MFOBGREH#~Z, AR TIEA
FHAREOH THEE T T VA ME L, 3 FEEO B 5 JHi

BTk LT, ZNEND Lssq D RENT HHRHUATRMAR
DA ONTREMBERZHEE L, kaRni,

2. [EEEFEE Zssq

MT R TOT —Z T LTS v =X U 2T
VYNNG EOEEOIRY FRO, HIRGUEE 0 25
EBLRWA =X ADRIEGEARER., Issq
(Rung-Arunwan et al., 2016,2017) 2’MEET D, HFTAT
ITEH O R EREE D BERINT 572, Zssq & HW
7o PR E OFTAT I TN D, ARFZETIE, MT IS
BISL D ACE S M D ZE B3I H 33 < FREER R E D
ERERE L T2, Issq DM ISEBIE ZBEEICHIH Lz,

3. NT CZBE DM D MFIERREE

B ARZE & Zssq DK M DOZE-I AR REEZE . LUTF O
450 ZRTTH FIIRBLE T V&2 W TN, 7V
235 MT ISE B AR % Forward FHE1213, ABIC f/IMb
IR D FRAARAT & ZRoe MT A > "=V g ra— R



(Uchida, 1993) D& L7, HHGHE T L3 #iH
13, AKSTEEHE 71 200km, AT ERRE 55. 465kn T 5,
ABIC e/ MUIT & 2 UL AT & “IEMT A o /38—
2 > 32— K (Uchida, 1993) ® Forward 38 T, 4 FHHD
BHET L O M IREBIS A R Tz, £D 5 B D 2050Hz,
1281z, 8Hz O RLENT HLHSHT & (k8 O 7K EJ5 16 D 22545 Fi
wsRilz, AETNTO S IO Lssa R AT &
A, 42 24 DZEMSATITBE L CHIERFEH O FIETH
577 VAL T 5% CRRABIEOREE £ -, M1
PEE B O 2RI AT RSV O i A A T

4. N SEBBOVFIATI LA

HIBRFEFFHFIEDO T 7 VA7 F MO T, SR
MAT 5. Uy VAT T LT —F OZEMINERHE O
BICHWSND, M ISERBO Y 7 VA7 T HiF, 2D
RN ST T AT L TORENKE CTH -T2,

5. #EE

4 T M ISERRE DZE /M oA DG U7 R e L
T, R EEOREIT, TORFERDIFELY bIAW
TSN K AT\ e, F2, BRI O MT ISEBI%
1FEKRFEH M OREEDEAN T SIS Tns 2 &
WooTz, 4 KT T /L0 MT GBS D 22/ 5547 O
Ty VAT T AL, TRTH Y RAET /)L TORBLD
THolze HURAETILTOREDEIZ, T /LD
DL, U7 VAT TFTEDUNDEE—HESEDLEN)
SO T TIT o7, RHMNT ARSI — A A%
EolETHEMICHWO D, Fio, RENT IRt ZE
oLy 23, BREIEOEAE TS, REhAER
XEE A ERIPS T, W0 TRIFZETIL, R bt
DOREOEE . fFHO L POBRER 5.1 1IT7 LT,
FLHNT FEEHT L AR D ZERI A O L o id, B AR R RS
PEXZ2 DS, 0. 4km OFEFAN TR DL o UBRINE D Z
Lol
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E
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o * sedimentary
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I -
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X 5.1 RHENFHERBLEAAHO L > P ORM%R

6. F&H

ARIRFEC W 72 ZRGTHARPTE 7 4 0 B HUEFHHE ©
Zssq O MT S BIER & SR | 2 DKV J5 101 D221 534 % T
TE LTz, AT RA~O IR ROFEIL, BEiko
AP LD bIRWHEIFHIZ KA T W, F2, @EEED
MT A BIERIE &K B ORI DAL AT T S
B ENboTz, £, Lssq O RENT IR & ATA O
ZEWH DT 7 VAT T ME, EBICH T AETILTE
BlTxpZ Endbinol, X6.1 0 Zssq O RLENT ST
ENHO L P ORBBRREN D, TS T EA AR FEBI
RS ALFHD L o 130, dkm ORGP T BT LT
DLy E—HTHIEnbhroTz, LY UATT
LOHTAET NV TRETEDLZEND, FENT ST
N DER A OFIIETEY . HIBREOXLITH
DHDOD, ZEEBGAADIRNY ODRE I GRS D &
EZzx bbb,

N

1. SEXE
TawatRung-Arunwan,WeerachaiSiripunvaraporn,
HisashiUtada, On the Berdichevsky average, 2016,
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1. Introduction

Sparsity and shortage of information is inherent to
most geostatistical projects. This pitfall makes modelers
puzzle over approaches to mitigate the setbacks and
optimize the available information. The combination of
data-characterization and geostatistical methods can be
a plausible way to minimize the problem.

This study aims to apply a combination of methods,
such as principal component analysis (PCA), and spatial
modeling techniques using conditional geostatistical
simulations, turning bands (TBSIM) and pluri-Gaussian
(PGSIM), to a real geochemical data set and lithologic
log data. The goal is to construct plausible 3D models of
geochemical compositions and lithotypes in the study
area in order to identify the zones with more occurrence
of mineralization and propose a geological interpretation
of fluid circulation in the study area.

The next sections introduce the study area and set out
the methodology and its perks to the current scenario.
Besides, the results are presented and discussed.
Although the methodology is applied to a specific
environment of this study, such combination can be
widely used for a myriad of geological contexts.

2. Model Domain and Dataset

Following our preceding study (de Sa et al., 2020), a
200mx700mx250m domain, located around 1500m below
the sea level (mbsl) was selected (Fig. 1). Previous
geochemical studies have indicated that this area is rich
in Ba-Zn-Pb. The proposed methodology uses a
multi-variate geochemical set (52 elements) and visual
core description information alongside X-ray diffraction
(lithotypes) as input data for TBSIM and PGSIM
implementations, respectively. These data were sampled
from six boreholes (black dots) spread along the E-W
direction, with variable lengths from 46m (borehole 1) to
180m (borehole III). The lithotypes classification is
broadly based on whether polymetallic sulfide minerals
and hydrothermal alteration are present.

Borehole I was drilled in a mound and is regarded as a
discharge zone of the hydrothermal system. Borehole VI
presented little evidence of sulfide and altered material
in its sample core descriptions and geochemical analysis,
being more likely a recharge zone. In addition, a seismic
survey of the area identified the development of a fault
between boreholes V and VI (dashed line).

. — Faultinferred by
seismic survey

Topography (mbsl)

W High: 1570

X_ Low: 1640

Figure 1: Dimension of study area and its spatial distribution of
boreholes. The black line shows the location of cross-section
for geostatistical results in Figure 2. The dashed line shows
the location of fault identified by a geophysical survey.

3. Methods

The proposed methodology integrates geochemical
measurements and lithotypes. Firstly, the entire
multivariate geochemical data is centered log-ratio (clr)
transformed and eight moderate-highly correlated
elements are selected, such as Zn, Pb, Cu, Ag, Ba, Cd, Sn
and Mn. These elements are not only statistically
correlated but also are the most representative ones in
mineralized zones in hydrothermal systems (Pirajno,
2009). Next, this subset is used as input to apply PCA,
which main products are principal component values (PC
values). TBSIM uses this variable to spatially locate
highly mineralized zones and set iso-surfaces to separate
the sulfide-rich zones from impoverished materials.
Finally, PGSIM is individually run in each zone. The
following subsections briefly describe the main
characteristics under PCA, TBSIM and PGSIM.

3.1. Principal component analysis (PCA)

PCA is a powerful tool to examine the interactions
between the various variables and find the most efficient
linear combination of them. Its efficiency stems from
its capability of the first two or three principal
components, PCs, to gather the greatest amount of total
variance. PCA method reduces the dimensionality of
data with many measured variables by transforming
these to a new, considerably smaller set of variables,
PCs.

3.2. Turn bands simulation (TBSIM)
The principle of TBSIM is to produce a non-conditional



simulation at first. That is, yielding a map that reflects
the variogram, but the data is not honored. Afterwards,
in order to correct it, a map is obtained by interpolating
the experimental error between the measured data and
non-conditional simulated value at each data point
(Chilés and Delfiner, 1999).

8.3. Pluri-Gaussian simulation (PGSIM)

This methodology aims to simulate categorical
variables by combining multiple multi-Gaussian
variables using multiple thresholds. The gist of PGSIM
is to yield two continuous Gaussian fields using standard
multi-Gaussian techniques. Therefore, these fields are
truncated to produce categories, which the thresholding
relies on the value of both Gaussian fields (Mariethoz
and Caers, 2015).

4. Results and Discussion

Three cross-sections along E-W were selected to depict
a conceptual model for an expected lithotypes
distribution (Fig. 2a).

By applying PCA considering the eight geochemical
elements, the eigenvalues and total variance of eight
PC’s are computes. PC1 retains most of the information
of the input data and accounts for 73% of total variance
whereas PC2’s variance is 12.3% and the sum of the
variances from PC3 to PC8 is as small as 14.7%.
Therefore, only PC1 was selected for TBSIM to locate
high-metal-content zones and interpret the
sulfide/sulfate mineralization process.

The TBSIM result is shown as an E-W vertical
cross-section (Fig. 2b) with iso-planes of the PC1 values
which reveal that PC values greater than PC1 = 4 are
thickly distributed underneath the sulfide mound,
suggesting stockwork formation, and a horizontal and
stratiform mineralization seems to occur from the
mound toward the east until the inferred fault.
Considering the stratiform mineralization and effects of
hydrothermal activity from the western boundary to the
inferred fault, this subarea was divided into three zones
following the iso-plane of PC1 = 4 for PGSIM. The top
zone is mainly unrelated to hydrothermal alteration and
composed of primary and reworked sediments. The
middle zone is a major mineralization zone containing
the massive sulfide mound, stockwork, and horizontal
and stratiform subseafloor sulfide layer. The bottom zone
mainly consists of pervasively altered rock.

These results resize the model domain to optimize the
PGSIM application. The easternmost limit was
rearranged to suit the distal edge of the polymetallic
sulfide body, shortening the E-W length from 700 to 500
m, while the vertical range remained unaltered.

The results of the PGSIM in each zone defined by
TBSIM are shown in the resized domain (Fig. 2c).
According to this model, the distribution of sulfide rock
suggests two fluid flows with high probability (red
arrows). The ascent flows toward the sulfide mound and
the lateral flows from the stockwork zone toward its
adjacent permeable layers. The former flow may be
predominant because mineralization is concentrated on
the seafloor and in the shallow subseafloor. The latter
flow induces large heat loss without forming a chimney
or mound and causes horizontal and stratiform
alteration and mineralization.
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5. Conclusion
The combination of PCA and two geostatistical
simulations, TBSIM and PGSIM are very efficient to
clarify geologic structure and 3D distribution of metal
contents in the model domain. They can contribute to (i)
construction of proper geologic and mineralization
models and (i) identification of hydrothermal fluid-flow
systems and the accumulation mechanism of base metals
in seafloor hydrothermal fields.
Acknowledgement: We sincerely thank Dr. Tatsuo
Nozaki and Dr. Yutaro Takaya for providing the chemical
analysis data obtained by D/V Chikyu.
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1. Introduction

In this study, we use Principal Component Analysis
(PCA) to establish a relationship among rare earth
elements (REE), §2H, and 8§20 for clarifying mixing
process in the reservoir from previous recharge study by
Shoedarto et al. (2020). PCA has been frequently applied
to processing geochemical and other types of geoscience
data to enhance the interpretability of the components
as combinations of multiple variables (Grunsky, 1997;
Cheng et al.,, 2009). Amongst several geochemistry
methods, the H2 and O!8 are widely known to identify
meteoric mixing in the reservoir. On the other hand,
REEs have been well studied as geochemical tracers in
aqueous environments (e.g., Willis and Johannesson,
2011).

The samples were obtained from seven active
geothermal wells in a high-temperature transitional
liquid to vapor reservoir, that is located geothermal field
in the Southern Bandung, West Java, Indonesia. This
power plant has been generating 275 MWe over the past
twenty years. Monitoring of the reservoir performance is
critical to minimize any undesirable effects in a timely
manner.

2. Methods

All of the samples were taken from the transitional
zone except for the GA-12 (Fig. 1) which was sampled
from the liquid zone. They were analyzed for the REEs
using an  Inductively = Coupled Plasma-Mass
Spectrometer (ICP-MS, Agilent 7500cx, Agilent
Technologies, U.S in Research Institute for Humanity
and Nature, Kyoto) and for §2H and 680 analyses in
Kyoto University using water isotope analyzer based on
cavity ring-down spectroscopy (L2130-i, Picarro Inc.,
U.S.). The & denotes the ratio of the sample to the
standard VSMOW.

The variations in Ce, Eu, and total REEs are the
result of inherited source rock signatures and water rock
interaction (WRI) through the recorded sorption and
from their REEs anomalies. To identify the anomalies
by considering the geological setting, normalization to
known materials such as Post Archean Australian Shale
(PAAS; McLennan, 1989) is indispensable.

The REEs, 62H and 680 data compositions were
converted into real number space by log-ratio transform.
By applying PCA function in the Origin program, the
data were reoriented to the greatest axis of variances
which becomes the 15t and 2nd principal components
(PCs) in a bivariate plot (Fig. 3).

3. Calculation

The isotopic shift ratios for both §2H and 680 from
the surface to the reservoir, 6i, can be calculated as
follow (D’Amore et al., 1993):

8i=61— xvx 1,000 1n a
where xvand a denote vapor fraction and fractionation

factor of the isotope at a specific temperature between
liquid and vapor, respectively.

The 62H and 6'%0 fractionations between liquid
and vapor in the reservoir can be expressed as:

62H es = 62Hsep — xv x 1,000 In @ (62Hep)

6180 s = §1805sep — xv x 1,000 In a (6180sep)

where the subscripts “res” and “sep” denote the
reservoir and separator, respectively. In the
temperature range from 0 to 374.1 °C, In a values for
62H and 6!80 are approximated by polynomial
equations of temperature 7 (in K, Horita and
Wesolowski 1995) as:

1,000 In o (62H) = 1,158.8 (7'%109) — 1,620.1 (7'2/108)

+794.84 (7'/103) — 161.04 + 2.9992 (109 7'3);
1,000 In o (8180) = —7.685 + 6.7123 (10%/7")
—1.6664 (109/7'2) + 0.35041 (10% T'3).

4. Results and Discussion

The results of 62H and 680 analyses reveal that
there are two groups of well fluids in Fig. 1. WY-1, GA-
11, and GA-12 wells had wundergone water-rock
interaction (WRI), with GA-12 at the most advanced
stage. The waters of PB-1, GA-3, GA-13, and WY-2 are
on the mixing line with PB-1 as the most diluted well as
it is located near to the Local Meteoric Water Line
(LMWL).

230
@ Wellfluid
A Meteoric
-35 Hot spring
A Cold spring
— LMWL

Water-rock interaction line

&'%0
Figure 1. Two groups of water-rock interaction (WRI) and
mixing are characterized by the 62H and 6180 analyses.
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Fluids that had been contacted with oxic
environment (recent meteoric recharge) usually show
negative Ce anomalies. From the spider diagram in Fig.
2, surprisingly the most diluted PB-1 and GA-3 have no
sign of negative Ce anomalies. Normalizing to PAAS
gives a clear anomaly of HREE (heavy REE)
enrichments relative to LREE (light REE) as well as
negative Ce anomalies and positive Eu anomalies for
most of the well samples (Fig. 2). Enrichments in HREE
are resulted from stable complexes forming with some
ligands and stay longer in the solutions. This implies
that all the fluid samples had interacted longer with
reservoir rocks.
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Figure 2. All samples showing HREE enrichments relative to
LREE, negative Ce (except for PB-1, GA-2, GA-3, and GA-5
wells) and positive Eu anomalies.

GA-12, GA-3, and PB-1 are well spread out along the
PC1 axis in Fig. 3A, meanwhile a factor-loading plot in
Fig. 3B shows that the most significant variables for the
component 1 are the HREE and wells from the WRI
group. Gd, Dy, Er, Tm, Yb, and Lu are better distributed
along the PC1 axis. Eu including the rest of the REEs
and 680 are spread out along the PC2 axis in Fig. 3B.
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Figure 3. The mixing wells PB-1 and GA-3 are well plotted in
the PC1 of the bivariate #H and 680 plot (A), meanwhile the
WRI wells, GA-13 and WY-2 are located along the PC2. Based
on the REEs, the loading plot of the WRI group strongly
influences PC1, while the mixing wells have more influences in
PC2 (B).
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Positive Eu anomalies in the WRI group from Fig. 2
show that reservoir fluids had undergone hydrothermal
alteration and removal of Eu from the hot fluids during
the precipitation of secondary minerals. This is in
agreement with the finding that Eu and Tm account for
the most influential elements in the WRI group. From
the score plot in Fig. 3B, the mixing group GA-3, GA-13,
and PB-1 are positively correlated to only the middle
REEs (Sm, Tb, and Ho). Conclusively, the mixing and
WRI groups are responsible for clustering their REEs
and 6180 samples.

5. Conclusion

Even though the 62H and &80 analysis present
signs for probable meteoric incursion for the wells in the
mixing line, there is still no correlation with the oxic
environments from Ce anomalies. It seems that the
mixing process in the 62H and 60 diagram are
dominated by non-meteoric water fluids such as
condensate fluids. Mixing of meteoric recharge in PB-1
and GA-3 was confirmed with the score plot of PC1 that
covered 77% of the variation. For this reason, the linear
mixing in Fig. 1 is not supposed to pass through the GA-
13 and WY-2 as there are more complex process other
than mixing with colder fluid in those wells.

On the other hand, oxic environment from the
negative Ce is oppositely correlated with the WRI group.
Hence, wells in the WRI group have no contact with
recent meteoric water in the great depth. The HREE
enrichments from the spider diagram suggest solid hint
of hydrothermal alteration and WRI for all the samples.
The WRI process in the reservoir that is reflected the
WRI group have positive correlation with not only Eu,
but also Gd, Dy, Er, Tm, Yb, and Lu. Those HREE could
be significant for WRI in the next research. The
approach using PCA for reservoir monitoring to
ascertain whether colder water incursion could be
predicted from the classification groups was explored.
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1. Introduction

Models are useful tools for simplifying complex
socioeconomic and biophysical forces that influence the
rate and spatial pattern of landuse change and for
anticipating future evolutions. The landuse change driven
urban expansion is one of the most influential
transformation that can affect the natural and social
cohesion (Kantakumar et al, 2020). This may be
reasoning the use of urban growth models to predict
urban expansion and its forms increasing gradually in the
scientific literature. However, several open source urban
growth models are available and comparative analysis of
these models is still missing. The attempt of this study is
to evaluate the outputs of three urban growth models
namely, FUTURES (FUTure Urban-Regional
Environment Simulation), MOLUSCE (Modules for Land
Use Change Simulations) and SLEUTH to construct
quantitative, spatially explicit urban simulation using
Colombo as study area with identical inputs.

2. Data and Methodology

This study uses the urban area maps derived from 30m
spatial resolution Landsat data as input for model
calibration and validation. The data used along with the
data sources are shown in Table 1. FUTURES and
MOLUSCE models require a site suitability surface and
an estimate of the quantity of future urban growth.
SLEUTH model requires urban extents, roads and a user-
defined exclusion layer that denotes the site suitability.
FUTURES model uses past population trends and
projected population to estimate per capita land demand
when estimating the amount of future urban growth.

Table 1: Input data used in this study
Data year Data source
Landsat 5 TM 1997,2005,2008 USGS
Landsat 8 OLI 2019 USGS

Population 1991,2001,2012 Dept of Census
and Statistics

Road network 2013 JICA

Water bodies 2013 JICA

DEM 2000 SRTM 30m

Social infrastructure 2004 Survey Dept

(Hospitals, schools)

Growth centers 2010 Survey Dept

Administrative 2010 Survey Dept

boundary

FUTURES model is a multilevel modelling framework
consists of three sub models namely, POTENTIAL,
DEMAND and PGA (Meentmayer et al, 2013).
POTENTIAL sub-model quantifies the site suitability
based on hypothesized environmental, infrastructural,
and socioeconomic factors. FUTURES model uses logistic
regression to estimate transition potential. DEMAND
sub-model quantifies per capita land demand. PGA is a
stochastic patch-growing algorithm that determines the
shape, size and distribution of urban patches.

SLEUTH is a cellular automata (CA) based urban
growth model (Clarke et al, 1997). The name of the model
is an acronym of inputs used namely, Slope, Land use,
Exclusion, Urban, Transport and Hillshade. SLEUTH
uses four growth rules namely, spontaneous, new
spreading center, edge and road-influenced growths.
These four urban growth rules are performed sequentially
in each growth cycle and are controlled by five-growth
coefficients dispersion, breed, spread, road gravity, and
slope resistance coefficients. These growth coefficients
need to determine by using model calibration with
historical urban growth. Brute force calibration method
using Monte Carlo simulations with POP metric has been
used to determine these five coefficients in this study.

MOLUSCE is a CA based model developed as a plugin
for QGIS. MOLUSCE uses historical urban maps to
calculate area of change as a first step. One method can
be selected among four available methods; Artificial
Neural Network (ANN), Weight of Evidence, Logistic
Regression or Multi Criteria Evaluation to estimate the
transition potential in second step. We have applied ANN
for estimating the transition potential using distance to
roads, growth centers, water bodies, schools, hospitals
and slope as explanatory variable. CA use the area of
change and transition potentials derived in first and
second step to simulate the urban growth.

In order to facilitate a fair comparison of simulation
capability of three models under study, the urban area
maps of 1995, 2005, 2014 and 2019 were used for
calibration/training. After calibration, we used 2008
urban area map to initiate the simulation to predict urban
extent of 2019. The simulation maps of three models were
validated by comparing it remote sensing derived urban
area map of 2019 using a confusion matrix.
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Table 2: Validation matrices for three models

Model Producer User Overall Specificit Matthews correlation Figure of Kappa
oaels Accuracy Accuracy  Accuracy P v coefficient (MCC) Merit bp
MOLUSCE 0.27 0.44 0.98 0.98 0.31 0.2 0.75
SLEUTH 0.61 0.31 0.93 0.93 0.39 0.26 0.66
FUTURES 0.36 0.31 0.96 0.96 0.29 0.2 0.69
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Figure 1: (a)Observed urban area map and vahdatlon maps

3. Results and Discussion

The urban growth models are approximation of complex
urban system. Thus, the validation of an urban growth
model is essentials to determine whether the model is
capable of representing city growth with sufficient
accuracy (Kantakumar et al, 2019). The results of
validation are presented in form of hits, misses, false
alarms and correct rejections are presented in Figure 1
and the validation metrics in Table 2.

The results show that the, overall accuracies of all three
models are over 90% indicates the higher agreement of
simulated pixels both urban and nonurban at correct
locations. The overall accuracy of MOLUSCE model is the
highest compared to SLEUTH and FUTURES. It is
important to note, the use of overall accuracy cannot be
interpreted as a direct method of model capability, due to
persistence of non-urban area is higher in the study area
in comparison to urbanized area (Kantakumar et al.,
2019). Therefore, Matthews correlation coefficient (MCC)
was used to avoid unbalanced effect of persistence and
change. The MCC is higher for SLEUTH (0.26) compared
to FUTURES and MOLUSCE. The Producers accuracy of
SLEUTH model is comparatively higher than other
models which explicit a higher capability of the model to
simulate urban pixels at the correct locations. Compared
to urban area growth 127.37sq.km during 2008-2019,
FUTURES, SLEUTH and MOLUSCE models simulated
148.91, 250.55, 77.10sqgkm respectively. Among simulated
quantities, SLEUTH model showed over estimation and
MOLUSCE model showed an under estimation while
FUTURE model simulated closely correct quantity of
urban growth. As FUTURES uses sub region wise urban
change and population growth to determine per capita
land demand which could be the reason for better
estimation of urban growth. The over estimation of
SLEUTH model simulations might be due to the reason of
only excluding water bodies from the development and
allowing unrestricted growth at all locations without
considering site suitability. The underestimation of urban

160°0'0"W 4OUOE 160°0°0°W 40°0°0"E

of (0)FUTURES, (¢c) SLEUTH and (d) MOLUSCE models

growth by MOLUSCE model might be the reason for
higher accuracy in contrast with other two models.

4 . Conclusion

Considering easy implementation with limited data
requirement, MOLUSCE could be identified as a model
with an acceptable accuracy. FUTURES is a robust, easily
customizable model with flexibility in incorporation of
complex policy scenarios. As SLEUTH model is
extensively used for urban growth studies, continuous
development of new extensions and usability has widely
explored. The aim of the study was to use identical inputs
to evaluate the performance of FUTURES, SLEUTH and
MOLUSCE models in their simplest status. The present
results reveals that keeping the variations of
implementation techniques and procedures involved in
these models, it is not fair to conclude which model is
performed better than other based on the current stage of
study. Thus, we are interested to carryout the study
further by customizing the models by using the same
method for estimating the transition potential modelling.
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1. Introduction

Convolution Neural Network (CNN) is currently the
state of the art for many remote sensing
image classification tasks. By learning with multiple
hidden layers, CNN models have shown outstanding
accuracy in various applications (Masi et al., 2017, Rezaee
et al.,, 2018). Traditional CNN models which include
numerous convolutional layers are very time-consuming
and require a huge training data and computational
resources. In comparison, Light CNN (LCNN) with only
few convolutional layers can achieve high accuracy in a
short processing time by using a small number of training
samples (Song et al., 2019). In this study, pixel-based and
object-based LCNN is applied to establish Land Use/
Land Cover (LULC) map of Lao Cai area in Vietnam.

2. Methodology
2.1. Data and study area

The study area, a part of Lao Cai province, located in
the North of Vietnam covers an area of approximately 525
km?2. The study area is the settlement area for ethnic
minorities. The main LULC classes are water, built-up,
mining/bare land, rice terrace, paddy field, non-forest
vegetation and forest.

RapidEye's sensors produce imagery in five spectral
bands at 5m resolution. In this study, 5 bands of RapidEye
image acquired on 9th September 2014 covering the study
area are used for LULC extraction. Reference polygon
samples of the 7 LULC classes were collected based on
visual interpretation of RapidEye image with verification
using Google Map (Figure 1). The reference samples cover
82.29 km2, which equals 14.9% study area.

2.2. Methodology

In CNN model, convolutional layer is the first layer
to extract feature maps from an input image. In
convolution, the filter moves through the entire input
image with the moving step decided by setting stride
hyperparameter. If the stride is 1, the filter is moved to 1
pixel at a time. Sometimes the filter does not perfectly fit
the input image size. Zero-padding is to pad the input
image with zeros so that the filter will fit the image.

Pooling layers are used to progressively reduce the
number of parameters when the images are too large. In
fully connected layer, the feature maps extracted from

previous layer are flattened into one-dimensional vector
and fed to a fully connected network. While the
convolutional layers learn the spatial features, the fully
connected layers learn the classification rule to extract
feature vectors by using an activation function. The
output of full connected layer is determined by using an
activation function.

2.2.1. PBIA and OBIA convolutional layer

Basically, in first convolutional layer, large filter sizes
could obtain better classification result than smaller filter
sizes considering the relation of a number of neighbor
pixels of input image. In this case, it is considered as
patch-based approach, or OBIA. However, when large
filter sizes are used, such as 5x5 and 7x7, the number of
parameters and computation cost increase drastically. To
resolve the problem, a 1X1 filter which generates only a
single parameter or weight for each channel of the input
image, and small filter size 3x3 were employed (Lin, et al.,
2013). The 1x1 filter does not involve any neighbor pixels
in the input but works with the individual pixel itself. In
this case, the convolutional layer could be considered as
PBIA. However, the layer needed to be combined a
nonlinearity with other convolutional layers, allowing the
projection to perform non-trivial computation on the input
feature maps. In this study, CNN model with PBIA
convolutional layer is considered as PBIA-CNN, while the
model with OBIA convolutional layer is named OBIA-
CNN.
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Fig 1. Reference map of this study



2.2.2. LCNN and OBIA-LCNN

In CNN model, when the number of network layers
increase, the information in the neurons of the network is
continuously combined. Eventually, the network extracts
deep concepts and expresses abstract semantic features
(Song et al., 2019). However,a deep network can lead to
time-consuming and overfitting. To ignore these
drawbacks, LCNN is applied for LULC classification in
this study. The workflow of PBIA-LCNN and OBIA-LCNN
are displayed in Figure 2. The two models have 3
convolutional layers. The first convolutional layer of
PBIA-LCNN filters the 3D input with 20 filters of size
1x1x5. In case of OBIA-LCNN, the first convolutional
layer includes 20 filters of size 3x3x5. The second and
third convolutional layers of PBIA-LCNN and OBIA-
LCNN have 20 filters of size 2x2%x20. Zero padding and
stride equals 1 are employed. The last Softmax layer
which provides a probability distribution over 7 LULC
classes. Fully connected layers and pooling layers are not
employed. Instead, ReLU activation function and Adam
optimizer with a learning rate of 10% are used. The
number of epochs equals to 100 and early stopping
technique is applied, the training processing stops when
the different between two consecutive loss (r) is lower or
equals to 10°6. Google Colaboratory framework is selected
to implement the models in this study.
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Fig 2. Architecture of (a) PBIA-LCNN, (b) OBIA-LCNN

Table 1: Classification accuracy (MB: Mining/bareland,
NF: Non-forest vegetation)

Accuracy (%)

LULC class PBIA OBIA

PA UA OA PA UA OA
Water 97 96 96 98 96 97
Built-up 94 91 92 94 92 93
MB 90 88 89 90 91 91

Paddy field 83 88 88 85 90 87
Rice terrace 95 94 95 97 94 95

NF 90 88 89 89 91 90
Forest 96 97 97 98 96 97
OA 94 94

UA: User’s Accuracy, PA: Producer’s Accuracy, OA: Overall
Accuracy
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3. Result and Conclusions

Figure 3 shows the result LULC maps of PBIA-
LCNN and OBIA-LCNN using RapidEye image. Table 4.1
gives producer’s, user’s and overall accuracy of the
classification.

In PBIA, all LULC maps extracted from RapidEye
image produce high overall accuracies (Table 1). Among
them, water, rice terrace and forest achieve excellent
accuracies, at 96%, 95% and 97%, respectively.
Mining/bare land, built-up, paddy field and non-forest
vegetation attain lower accuracies, at 89%, 92%, 88% and
89%, correspondingly. The difference between producer’s
accuracies and user’s accuracies of all classes are small,
less than or equal to 5%. Overall accuracy of the
classification is 94%.

Classification accuracies of all LULC classes in OBIA
are more than 87%. Similar to the PBIA, water, rice
terrace and forest are the most accurate classes, at 97%,
95%, 97%, respectively, followed by mining/bare land,
built-up, paddy field and non-forest vegetation, at 91%,
93%, 87% and 90%, respectively. In general, the difference
between producer’s and user’s accuracies of individual
LULC classes are small, no more than 5%. Overall
classification accuracy is equal to PBIA, at 94%.

The result shows that both PBIA-LCNN and OBIA-
LCNN are effective classification techniques for LULC
mapping. Moreover, the LCNN models have capability of
handling large RS datasets to aid in monitoring LULC
change on a local as well as regional scale using RS
images.
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1. Introduction

Water Quality Monitoring (WQM) is identified as a
major discipline in the field of environmental monitoring.
Numerous challenges in WQM have identified in recent
scientific literature (Kamaruidzaman et al, 2019).
Conventional methods for WQM are time consuming and
expensive task (Chen et al, 2020). Proliferation of mobile
phones and development of the Internet of Things (IoT)
have increased ubiquity of data collection by integrating
sensors and smartphones. Major development from this
study is to develop a platform by integrating mobile
phones and sensors which can measure the chemical
parameters of water. The quality of water bodies such as
rivers, ponds, and lakes can be evaluated by monitoring
parameters such as pH, temperature, and Electrical
Conductivity (EC), which are the most commonly used
indicators to monitor water quality. These parameters
are recoded along with the location information. The
system consists of spatial data acquisition, analysis and
sharing and by following OGC standards which enables
spatial data proliferation.

2. Method and System Components

Open Data Kit (ODK, https://opendatakit.org/) that
provides tools to facilitate collection and transmission of
georeferenced data to a centralized server is used for data
collection and aggregation. ODK consists of three
modules; namely ODK Build, ODK Collect and ODK
Aggregate. ODK collect is capable of recording GPS
location, text, multi-media content such as image, video,
audio and barcodes. External sensor recordings are
inserted to ODK Collect using Sensor app
(https://github.com/niroshansb/sensors_app) which is an
Android mobile application developed by this study.

The system consists with sensor device which includes
microcontroller, sensor signal converter modules and
Bluetooth module. Components and the connectivity of
devices are illustrated in Figure 1. Conventional glass
electrode sensor has been used to measure pH (Stock
Keeping Unit (SKU): SEN0161 from dfrobot.com). The
pH sensor is capable of measuring values from 0 to 14
with £0.1 (25 °C) accuracy. The DS18B20 temperature
sensor (SKU:DFR0198 from dfrobot.com) which provides
9 to 12-bit temperature readings with =0.5°C accuracy

for —55 ~ 125C ranges over a 1-Wire communication
bus is selected to measure the temperature. EC is
measured using analog electrical conductivity meter
(SKU:DFR0300 from dfrobot.com). EC k=1 sensor is
selected due to its suitability in water -culture,
aquaculture for inland water bodies with the detection
range of 0 to 2,000mS/m along with +5% accuracy
(DFRobot EC Sensor wiki, 2020). Recommended

{7 G
EC ]
Temperature y

Figure 1: Schematic diagram of system components

Obtained sensor measurement values of
physiochemical parameters of water and were first
transferred via Bluetooth from sensor device to the
mobile phone. Transferred data were inserted into the
fields in ODK Collect form. The data is achieved in ODK
Aggregate using the PostgreSQL database backend. A
Web-GIS client was implemented for visualization of field
data with the integration of GeoServer and OpenLayers
JavaScript library. Furthermore, the collected data is
published using OGC WF'S standard. The workflow of the
developed system is elaborated in Figure 2.

Figure 2: Data flow of developed system



3. Performance and Accuracy Assessment

Laboratory experiment was carried out to evaluate
system performance and accuracy as shown in Figure 3.
Ten water samples were collected randomly from ponds
and Yamato river near Osaka City University. The
sensors are calibrated as per the instructions given by
the manufacturer. Values were recorded using ODK
Collect app. Completed ODK Collect forms were uploaded
to the server. Furthermore, same samples were measured
using Horiba-D-74 water quality instrument. The
measurements show high coefficient of determination
(R?) for both pH (0.99) and EC (0.89). The experiment
reveals the suitability of the system for field data
collection.

Figure 3: Experiment setups in the laboratory

4. Data Collection and Results

The system is deployed to measure physiochemical
parameters of water in different locations along the
Yamato river, as a field experiment. Total 20 samples
were measured on the site from both the developed
system and Horiba-D-74.

Locations and data collection method is shown in
Figure 4. Samples were collected in a standard method
for water sample collection. The correlation between pH,
EC and temperature values obtained from Horiba-D-74
and developed system is illustrated in Figure 5. pH
values are varying from 7 to 9 while EC has a significant
variation. The temperature show consistent values for all
20 samples. Considerable changes and low R2 (0.55) is
noticed while measuring the EC with DFRobot sensor
due to degradation of probe. Therefore, the EC sensor
was replaced with Atlas Scientific EC probe
(ENV-40-EC-K1.0 from atlas-scientific.com) which has
+2% accuracy for 0.5 to 20,000 mS/m measuring range
and data were collected again from the same experiment
sites. Data from Atlas EC probe consistent measurement
and high R2 (0.92) compared to Horiba-D-74.
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Figure 4: (a) Sample collections and measuring method
(b) Data collection points displayed on Web interface-GIS Client
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Figure 5: (a) pH values,
(b) Electric conductivity in mS/m, (c) Temperature in Celsius

5. Conclusion

This study was conducted to identify the wuser
experience and limitations of the developed system when
using for field data collection. Developed system has
several advantages such as capability of visualizing
readings on the interactive web interface based on
different locations near real-time. It enables monitor and
identify the changes from remote locations to the field.
Moreover, sensors can be replaced or added easily to the
system. Additionally, data can be recorded and sent on
site. Similarly, data can be recorded offline as well. In
such situation, data can be transmitted when the
internet is available. More importantly, this system has
the capability of changing and adding parameters in data
collection from both human observation and external
sensor input data simultaneously.

6. Future Development

This system allows the fast and automated data
aggregation, sharing and visualization. Study identified
that in-situ water quality monitoring is not adequate to
investigate water quality changes. Therefore, the
capability of the system will be extended by adding
continuous water quality measuring devices. The data
will be recorded in the same system from both in-situ and
continuous monitoring.
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